
Programming the

pROGRAMMING THE 65816
1\\\\\\\\\\\\\\\\\\\\

1\\\\\\\\\\\\\\\\\\\\

1\\\\\\\\\\\\\\\\\\\\

1\\\\\\\\\\\\\\\\\\\\

1\\\\\\\\\\\\\\\\\\\\

1\\\\\\\\\\\\\\\\\\\\

1\\\\\\\\\\\\\\\\\\\\

1\\\\\\\\\\\\\\\\\\\\

1\\\\\\\\\\\\\\\\\\\\

WILLIAM LAB/AK

Q®
v

BERKELEY • PARIS • DUSSELDORF • LONDON

Cover design: Dave Jensen
Book design: Jeffrey James Giese

ORCA/M is a registered trademark of the Byte Works, Inc.

SYBEX is not affiliated with any manufacturer.

Every effort has been made to supply complete and accurate information. However, SYBEX

assumes no responsibility for its use, nor for any infringements of patents or other rights of third

parties which would result.

Copyright©1986 SYBEX Inc., 2344 Sixth Street, Berkeley, CA 94710. World rights reserved. No part

of this publication may be stored in a retrieval system, transmitted, or reproduced in any way,

including but not limited to photocopy, photograph, magnetic or other record, without the prior

agreement and written permission of the publisher.

Library of Congress Card Number: 86-61059

ISBN 0-89588-324-4
Printed by Haddon Craftsmen
Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

ACKNOWLEDGMENTS

The author wishes to acknowledge the following people who assisted in
the preparation of this book. William Mensch, Jr., of Western Design Cen­
ter, Inc., provided the author with timely information on the 65816 micro­
processor. Dan Tauber reviewed the manuscript and provided helpful
suggestions. Tanya Kucak, editor, provided valuable assistance in the prep­
aration of the text.

The staff of SYBEX also provided expert help. In particular, Rudolph Langer
(editor-in-chief) suggested the subject and provided valuable support. Thanks
also to Jeffrey Giese (design), David Clark and Olivia Shinomoto (word pro­
cessing), Eileen Walsh and Aidan Wylde (proofreading), Joel Kroman (techni­
cal support), and Cheryl Vega and Dawn Amsberry (typesetting).

vi

TABLE OF CONTENTS

INTRODUCTION

CHAPTER I: BASIC CONCEPTS

What Is Programming?
Flowcharting
Information Representation

Internal Representation of Information
External Representation of Information

Exercises

CHAPTER 2: 65816 HARDWARE
ORGANIZATION

System Architecture
Inside a Microprocessor
Internal Organization of the 65816
Instruction Formats of the 65816
Execution of Instructions in the 65816
The 65816 and 65802 Chips
Summary
Exercises

CHAPTER 3: BASIC PROGRAMMING
TECHNIQUES

Arithmetic Programs
BCD Arithmetic

x

I

1
2
4
4

22
25

31

31
33
41
44
47
48
51
52

55

55
65

vii

Multiplication 71
Binary Division 82
Logical Operations 87
Instruction Summary 88
~~~~ ~ 
Summary 95 
h~~ % 

C HAPTE.R 4: THE. 65816 INSTRUCT/ON SE.T 99 

Classes of Instructions 99 
The 65816 Instruction Set 101 
Summary 112 
Exercises 112 

THE 65816 INSTRUCTIONS: INDIVIDUAL 
DESCRIPTIONS (ADC-XCE) 114 

C HAPTE.R 5: ADDRESSING TE.CHNIQUE.S 207 

Possible Addressing Modes 207 
65816 Addressing Modes 214 
Using the 65816 Addressing Modes 222 
Summary 227 
Exercises 227 

C HAPTE.R 6: INPUT/OUTPUT TE.CHNIQUE.S 229 

The 65816 Input/Output Instructions 229 
Parallel Byte Transfers 235 
Bit Serial Transfer 239 
Basic Input/Output Summary 244 
Communicating with Input/Output Devices 244 



viii 

Peripheral Summary 255 
Input/Output Scheduling 256 

Summary 267 
Exercises 267 

CHAPTER 7: INPUT/OUTPUT DEVICES 273 

The "Standard" PIO 273 

Programming a PIO 275 

The Western Design Center 65SC21 PIA 276 
The 65816 ACIA 278 

Other 1/0 Chips 279 
Summary 280 

CHAPTER 8: APPLICATION EXAMPLES 283 

Clearing a Section of Memory 283 

Getting Characters In 284 
Testing a Character 284 

~~~~ m 
Generating Parity 286
Code Conversion: ASCII to BCD 286
Converting Hex to ASCII 287

Finding the Largest Element of a Table 287
~mclN~m~~ W8
Checksum Computation 288
Count the Zeros 290
Block Transfer 290
Bubble-Sort 291
Summary 295

Exercises 296

CHAPTER 9: DATA STRUCTURES 30 I

ix

PART I-THEORY 30 I
Pointers 301
Lists 302
Searching And Sorting 307
Section Summary 308

PART II-DESIGN EXAMPLES 308
Data Representation for the List 309
Simple List 311
Alphabetic List 313
Linked List 322
Summary 331
Exercises 333

CHAPTER 10: PROGRAM DEVELOPMENT 335

Programming Choices 335
Software Support 338
The Program Development Sequence 339
Hardware Alternatives 342
The Assembler 345
Summary 353
Conclusion 353

APPENDIXES 355

Appendix A: Hexadecimal Conversion Table 355
Appendix B: ASCII Conversion Table 356
Appendix C: Decimal to BCD Conversion Table 357
Appendix D: The 65816 Instruction Set: Operation,

Operation Codes, and Status Register 358
Appendix E: Detailed 65816 Instruction Operation 360

Bibliography 364

Index 365

x

/ NTRODUCTION

If you want to write assembly language programs for any system based on
the 65816, this is the book for you. The 65816 is the 16-bit version of the
6502. In this book, you will find:

• Everything you need to know about the organization and instruction
set of this exceptionally interesting microprocessor.

• A complete presentation of the elements of assembly language
programming.

• All the essential elementary and intermediate programming techniques
that will allow you to begin programming the 65816 on your own.

When you have mastered the material in this book, you will understand
how 65816 systems, when properly designed and programmed, can
deliver 16-bit performance with 8-bit economy-and you will have gained
the knowledge necessary to make the 65816 do this for you.

Programming the 65816 is organized so that the chapters proceed from
the simple to the complex. As you read, you will gradually encounter all
the concepts and techniques required to build more and more complex
programs, to do more and more advanced tasks.

Chapter 1 introduces you to the basics of programming: what it really is,
how to keep track of what you are doing, and what you have to do.

Chapter 2 gives the first rundown on the 65816 processor: the registers and
the buses, and how instructions are actually executed within the processor.

Chapter 3 gets you into simple programs and teaches you the kinds of
arithmetic the 65816 is capable of, as well as logical operations, and the
important concept of subroutines.

Chapter 4 is the big one-a complete description of the 65816 instruc­
tion set. After a discussion of the classes of 65816 instructions, I present a
detailed explanation of each instruction. I discuss the instructions in alpha­
betical order for easy reference.

Chapter 5 details one of the most important aspects of the 65816: the
addressing modes. I begin this essential treatment with a background dis­
cussion on the different kinds of addressing possible in microprocessors,
and how they work. I then go on to examine the actual addressing modes
in this context. Finally, I give concrete examples of the application of each
of the modes, to help you completely understand what they can do.

Chapter 6 covers essential input/output techniques, 65816 style, includ­
ing: the 1/0 instruction repertory of the 65816, simple serial and parallel I/
0 programs, some concrete implementations of common 1/0 tasks, and
more advanced techniques.

Chapter 7 considers several 1/0 chips that are commonly used to inter­
face the 65816 to the external world.

Chapter 8 gets into more extensive application programs. These programs
do all sorts of things. But each shows how the 65816 can make simple and
fast that which on other microprocessors is cumbersome and slow.

Chapter 9 discusses data structures-another important, though more
advanced, area in which the 65816 shines-including pointers, list search­
ing, sorting, and more complex programs and techniques.

Chapter 10 offers a forward look at the world of program development
that is now open to you. I compare and evaluate hexadecimal "machine
language" coding, assemblers, and high-level languages. I also touch on
some available, and more or less desirable, program development
environments.

Several useful appendixes and an index bring the book to an end.
Most of the programs in this book were tested on an APLC16 board in

an Apple lie computer using the ORCA/M assembler. Those valuable
resources are products of Comlog, of Scottsdale, Arizona, and the Byte
Works, of Albuquerque, New Mexico, respectively, which made them
available to me for the development of this book. I thank them for thus
assuring the accuracy of the programs used throughout this book.

William Labiak

Berkeley, California
Spring 86

xi

I

IN THIS CHAPTER, I introduce the basic concepts and definitions used in
computer programming. If you are already familiar with these concepts,
you may only want to glance quickly at this chapter, then move on to Chap­
ter 2. I suggest, however, that you read through this chapter, even if you're
an experienced programmer, to familiarize yourself with the approach I'll
be using throughout this book.

WHAT IS PROGRAMMING?

Given a problem, one normally tries to devise a solution. This solution,
expressed as a step-by-step procedure, is called an algorithm. An algo­
rithm may be expressed in any language or symbolism, and it must termi­
nate in a finite number of steps. Here is a simple example of an algorithm:

1. Insert key into keyhole

2. Turn key one full turn to the left

3. Seize doorknob

4. Turn doorknob left and push the door

At this point, if the algorithm is correct for the type of lock involved, the
door will open.

2 PROGRAMMING THE 65816

Once you've expressed a solution to a problem in the form of an algo­
rithm, a computer can then execute the algorithm. Unfortunately, com­
puters cannot understand or execute ordinary spoken English or any
other human language. The reason for this lies in the syntactic ambiguities
of all common human languages. Only a well-defined subset of a natural
language, called a programming language, can be "understood" by the
computer. Converting an algorithm into a sequence of instructions in a
programming language is called programming. The actual translation
phase of the algorithm into the programming language is called coding.
Programming refers not just to the coding, but also to the overall design of
the programs and data structures that will implement the algorithm.

Effective programming requires not only an understanding of the pos­
sible implementation techniques for standard algorithms, but also the skill­
ful use of computer hardware resources (such as internal registers, mem­
ory, and peripheral devices), and creative use of appropriate data
structures. I will cover these techniques in the following chapters.

Programming also requires a strict documentation discipline. Well­
documented programs are understandable to others, as well as to the
author. Documentation must be both internal and external to the pro­
gram. Internal program documentation refers to the comments used in the
body of a program to explain its operation. External documentation refers
to the design documents that are separate from the program, including
written explanations, manuals, and flowcharts.

An intermediate step is almost always used between the designing of the
algorithm and the program. It is called flowcharting.

FLOWCHARTING

A flowchart is simply a symbolic representation of an algorithm, expressed
as a sequence of rectangles and diamonds. On the flowchart, rectangles
are used to represent commands, or executable statements, and diamonds
are used for tests, such as: If information X is true, then take action A, else
B. Figure 1.1 shows an example of a flowchart. I will not present a formal
definition of flowcharts at this point; I will discuss flowcharting in more
detail in Chapter 3.

Flowcharting is a highly recommended intermediate step between the
specification of .the algorithm and the actual coding of the solution.
Remarkably, perhaps 10 percent of the programming population can write
a program successfully without having to flowchart. Unfortunately, 90 per­
cent of the population believes it belongs to this 10 percent! The result is

2

NO

(Room too cold)

4

(Optional delay)

START

READ TEMPERATURE
SETTING "T" ON

THERMOSTAT BOX

READ ACTUAL ROOM
TEMPERATURE "R"

FROM THERMOMETER
OR OTHER SENSOR

YES

(Room too hot)

5

Figure I.I: A Flowchart for Keeping Room Temperature Constant

BASIC CONCEPTS 3

(Optional delay)

that, on the average, 80 percent of these programs will fail the first time
they are run on a computer. (These percentages are naturally not meant
to be accurate.) In short, most novice programmers seldom see the neces­
sity for drawing a flowchart. This usually results in "unclean" or erroneous
programs, and programmers must then spend a long time testing and cor­
recting their programs. (This is called the debugging phase.) The discipline
of flowcharting is, therefore, highly recommended in all cases. It requires
a small amount of additional time prior to the coding, but it usually results
in a clear program that executes correctly and quickly. Once flowcharting
is well understood, a small percentage of programmers can perform this
step mentally, without using paper. Unfortunately, in such cases the pro­
grams they write are usually difficult for anyone else to understand, since
the documentation provided by the flowchart is not available. As a result,

4 PROGRAMMING THE 65816

it is universally recommended that flowcharting be used as a strict disci­
pline for any program more than 10 or 15 instructions long. This book
provides many examples of flowcharting throughout.

/ NFORMATION REPRESENTATION

All computers manipulate information in the form of numbers or charac­
ters. I will now examine the external and internal representations of infor­
mation on a computer.

INTERNAL REPRESENTATION OF INFORMATION
All information in a computer is stored as groups of bits. A bit stands for a
binary digit. Because of the limitations of conventional electronics, the
most practical representation of information uses two-state logic. The two
states of the circuits used in digital electronics are generally off and on;
these states are represented logically by the symbols 0 and 1. Because
these circuits are used to implement logical functions, they are called
binary logic circuits. As a result, virtually all information processing today
is performed in binary format. In the case of microprocessors in general,
and of the 65816 in particular, these bits are structured in groups of eight.
A group of eight bits is called a byte. A group of four bits is called a nibble.
Two bytes, or 16 bits, form a word.

Let's now examine how information is represented internally in this
binary format. Two entities must be represented inside the computer. The
first is the program, which is a sequence of instructions. The second is the
data on which the program operates. The data may include numbers or
alphanumeric text. I will now discuss the representation of instructions,
numbers, and alphanumerics in binary format.

Program Representation
All instructions are represented internally as single or multiple bytes. A so­
called short instruction is represented by a single byte. A longer instruc­
tion is represented by two or more bytes. The 65816 is a 16-bit
microprocessor, so it fetches bytes successively from its memory. There­
fore, a single-byte instruction always has the potential for executing faster
than a two- or three-byte instruction. You will see later on that this is an
important feature of the instruction set of any microprocessor, and of the
65816 in particular. The limitation to eight bits in length can result in

BASIC CONCEPTS 5

important restrictions; however, the 65816 does not have these restric­
tions because 16-bit words may be used. This limitation is a classic
example of the compromise that often has to be made between speed
and flexibility in programming. The binary code used to represent instruc­
tions is dictated by the manufacturer: the 65816, like any other micropro­
cessor, comes equipped with a fixed instruction set. The instructions for
the 65816 are presented in Chapter 4 and listed with their code in Appen­
dix D. A program is expressed as a sequence of these binary instructions.

Representing Numeric Data
Representing numbers in binary is not a straightforward task: several cases
must be distinguished. You must be able to represent whole numbers,
then signed numbers (positive and negative numbers or integers), and
finally, numbers with a decimal point. Let's now address these require­
ments and possible solutions.

You can represent integers using a direct binary representation. The
direct binary representation is simply the representation of the decimal
value of a number in the binary system. In the binary system, the right­
most bit represents 2 to the power 0. The next bit to the left represents 2
to the power 1, the next one represents 2 to the power 2, and the leftmost
bit represents 2 to the power 7 = 128. For example,

represents:

b 27 + b 26 + b 25 + b 24 + b 23 + b 22 + b 21 + b 20 7 6 5 4 3 2 1 0

The powers of 2 are:

27 = 128, 26 = 64, 25 = 32, 24 - 16, 23 = 8, 22 = 4, 21 = 2, 2° = 1

The binary representation is analogous to the decimal representation of
numbers, where 123 represents:

1 x100 = 100
+ 2 x10 20
+ 3 xl 3

123

Note that 100 = 102, 10 = 101, 1 = 100. In this positional notation, each
digit represents a power of 10. In the binary system, each binary digit or

6 PROGRAMMING THE 65816

bit represents a power of 2, instead of a power of 10 as in the decimal

system. Let's look at an example of binary. In binary, 00001001 represents:

1x 1=1(20)
0 x 2 = 0 (21)

0 x 4 = 0 (22)

1 x 8 = 8 (23)

0 x 16 = 0 (24)

0 x 32 = 0 (25)
0 x 64 = 0 (26)

0 x 128 = 0 (27)

in decimal: = 9

Let's look at some other examples. 10000001 represents:

1 x 1 = 1
0 x 2 = 0
0 x 4 = 0
0 x 8 = 0
0 x 16 = 0
0 x 32 = 0
0 x 64 = 0
1 x 128 = 128

in decimal: = 129

Therefore, 10000001 represents the decimal number 129. By examining

the binary representation of numbers, it is easy to understand why bits are

numbered from 0 to 7, going from right to left. Bit 0 is b0 and corresponds

to 2°. Bit 1 is b1 and corresponds to 21, and so on. The binary equivalents

of the numbers from 0 to 255 are shown in Table 1.1.

Decimal to Binary Conversely, I will now compute the binary equivalent of

11 decimal:

11 + 2 = 5 remains 1 - 1 (lowest bit)

5 + 2 = 2 remains 1 - 1
2 + 2 = 1 remains 0 - 0
1 + 2 = 0 remains 1 - 1 (highest bit)

The binary equivalent is 1011 (read the rightmost column from bottom to

top). You can obtain the binary equivalent of a decimal number by divid­

ing successively by 2, until you obtain a quotient of 0.

BASIC CONCEPTS 7

Decimal Binary Decimal Binary

0 CXXXXXlOO 32 00100000

l 00000001 33 OOlOCXXJl

2 00000010 .
3 00000011 .
4 00000100 •
5 00000101 63 00111111

6 00000110 64 01000000

7 00000111 65 01000001

8 OCXXJlOOO •
9 OCXXJlOOl •

10 OCXXJ1010 •
11 OCXXJlOl l 127 01111111

12 OCXXJllOO 128 10000000

13 OCXXJl 101 129 10000001

14 OCXXJl 110

15 OCXXJl 111 .
16 OOOlOCXXJ •
17 00010001 .
. .
• 254 11111110

31 00011111 255 11111111

Table I.I: Decimal-Binary Table

Operating on Binary Data The arithmetic rules for binary numbers are
straightforward. The rules for addition are

0+0- 0
0 + 1 =

1 + 0 = 1
1 + 1 = (1)0

8 PROGRAMMING THE 65816

where (1) denotes a carry of 1 (note that 10 is the binary equivalent of 2

decimal). Binary subtraction can be performed by "adding the comple­

ment." I will discuss binary subtraction once I show you how to represent

negative numbers. Consider the following example involving addition:

10 (2)

+ 01 (1)

= 11 (3)

Addition is performed just as in decimal, by adding the columns from

right to left. First you add the rightmost column:

10
+ 01

11
(0 + 1 = 1. No carry.)

Then the next column:

10
+ 01

11
(1 + 0 = 1. No carry.)

Now look at other examples of binary addition:

0010 (2)
+ 0001 (1)

= 0011 (3)

0011 (3)
+ 0001 (1)

= 0100 (4)

The last example illustrates the role of the carry. Looking at the rightmost

bits: 1 + 1 = (1)0. A carry of 1 is generated, which must be added to the

next bits:

001 - column 0 has just been added
+ 000
+ 1 (carry)

= (1)0 (where (1) indicates a new carry into column 2)

The final result is 0100.

BASIC CONCEPTS 9

Consider another example:

0111 (7)
+ 0011 (3)

1010 (10)

In this example, a carry is again generated, up to the leftmost column.
With eight bits, it is therefore possible to directly represent the numbers

00000000 to 11111111-that is, 0 to 255. Two limitations, however, are
immediately obvious. First, you can only represent positive numbers. Sec­
ond, the magnitude of these numbers is limited to 255, if you use only
eight bits. Let's now address these limitations in turn.

Signed Binary In a signed binary representation, the leftmost bit is used to
indicate the sign of the number. Traditionally, 0 is used to denote a positive
number and 1 is used to denote a negative number. For example,
11111111 represents -127, while 01111111 represents +127. You can
now represent positive and negative numbers, but the maximum magni­
tude of these numbers is only 127. As another example, 00000001 repre­
sents + 1 (the leading 0 is +, followed by 0000001 = 1) and 10000001 is
-1 (the leading 1 is -).

Let's now address the magnitude problem. To represent larger numbers,
you must use a larger number of bits. For example, if you use 16 bits (two
bytes) to represent numbers, you can represent numbers from - 32K to
+ 32K in signed binary. (In computer jargon, 1 K represents 1,024.) Bit 15 is
used for the sign, and the remaining 15 bits (bit 14 through bit 0) are used
for the magnitude: 215 = 32K. If this magnitude is too small, you must use
three bytes or more.

If you wish to represent large integers, you must use a larger number of
bytes internally. This is why most simple BASIC interpreters, and other lan­
guages, provide only a limited precision for integers. This way, they can
use a shorter internal format for the numbers they manipulate. Better ver­
sions of BASIC and some other languages provide a larger number of sig­
nificant decimal digits at the expense of a large number of bytes for each
number.

Let's now solve another problem: the one of speed efficiency. Let's per­
form an addition in the signed binary representation just introduced. To
add + 7 and - 5:

+ 7 is represented by 00000111
- 5 is represented by 10000101

The binary sum is: 10001100, or -12

I 0 PROGRAMMING THE 65816

This is not the correct result. The correct result is + 2. Thus, to use this

representation, you must take special actions, depending on the sign. This

results in increased complexity and reduced performance. In other

words, the binary addition of signed numbers does not work correctly.

This is annoying. Clearly, the computer must not only represent informa­

tion, but it must also perform arithmetic on it.
The solution to this problem is called the two's complement representa­

tion, which you use instead of the signed binary representation for nega­

tive numbers. To introduce two's complement, I will first introduce an

intermediate step: one's complement.

One's Complement In the one's complement representation, all positive inte­

gers are represented in their correct binary format. For example, + 3 is

represented as usual by 00000011. However, its complement, - 3, is

obtained by complementing every bit in the original representation. Each

0 is transformed into a 1, and each 1 is transformed into a 0. In the

example, the one's complement representation of - 3 is 11111100.

Let's look at another example:

+ 2 is 00000010
- 2 is 11111101

Note that in this representation, positive numbers start with a 0 on the left,

and negative numbers start with a 1 on the left. As a test, add - 4 and + 6:

- 4 is 11111011
+ 6 is 00000110

The sum is: (1)00000001

where (1) indicates a carry. The correct result should be 2 or 00000010.

Let's try again:

- 3 is 11111100
- 2 is 11111101

The sum is: (1)11111001

or - 6, plus a carry. The correct result is - 5. The representation of - 5 is

11111010. It did not work.
This representation does represent positive and negative numbers, but

the result of an ordinary addition does not always come out correctly. I

will now use another representation. It is evolved from the one's comple­

ment and is called the two's complement representation.

BASIC CONCEPTS 11

Two's Complement Representation In the two's complement representa­
tion, positive numbers are represented, as usual, in signed binary, just as
in one's complement. The difference lies in the representation of negative
numbers. In two's complement, a negative number is obtained by first
computing the one's complement and then adding one. Let's examine an
example.

Example: + 5 is represented in signed binary by 10000101. Its one's
complement representation is 11111010. The two's complement is
obtained by adding one. It is 11111011.

Let's try a subtraction:

00000011 (3)
+ 11111011 (- 5)

= 11111110

Now, let's identify the result by computing the two's complement:

(the one's complement of 11111110 is)
(add 1)

(therefore, the two's complement is)

00000001
+ 1

00000010 or + 2

The result 11111110 represents - 2. It is correct.
Now add + 4 and - 3 (the subtraction is performed by adding the two's

complement):

+4 is 00000100
- 3 is 11111101

The result is: (1)00000001

If you ignore the carry, the result is 00000001 (1 in decimal). This is the
correct result. Without giving the complete mathematical proof, I will sim­
ply state that this representation does work. In two's complement, you can
add or subtract signed numbers, regardless of the sign. With the usual
rules of binary addition, the result is correct, including the sign. The carry
is ignored. This is a significant advantage. If this were not the case, you
would have to correct the result for sign every time, causing a much
slower addition or subtraction time.

For the sake of completeness, let me state that two's complement is sim­
ply the most convenient representation to use for simpler processors,
such as microprocessors. On more complex processors, you may use
other representations. For example, you may use one's complement, but

12 PROGRAMMING THE 65816

if you do, you need special circuitry to "correct" the result.

From this point on, I will implicitly represent all signed integers inter­

nally in two's complement notation. See Table 1.2 for a table of two's com­

plement numbers.
I will now offer examples that demonstrate the rules of two's coml'le­

ment. In particular, C denotes a possible carry (or borrow) condition. (It is

bit 8 of the result.) V denotes a two's complement overflow; that is, when

the sign of the result is changed accidentally, because the numbers are too

large. It is essentially an internal carry from bit 6 to bit 7 (the sign bit). I

will clarify this below.

The Carry C Here is an example of a carry:

10000000 (128)
+ 10000001 (129)

= (1)00000001 (257)

where (1) indicates a carry. The result requires a ninth bit (bit 8, since the

rightmost bit is 0). It is the carry bit.

If you assume that the carry is the ninth bit of the result, you recognize

the result as binary 100000001 = 257. However, the carry must be recog­

nized and handled with care. Inside the microprocessor, the registers used

to hold information are generally only eight bits wide. When storing the

result, only bits 0 to 7 will be preserved. The 65816 also has 16-bit internal

registers, but the carry will still occur if a result is greater than 65535.

A carry, therefore, always requires special action. It must be detected by

special instructions, then processed. Processing the carry means storing it

somewhere (with a special instruction), ignoring it, or deciding that it is an

error (if the largest authorized result is 11111111).

Overflow V Here's an example of overflow:

bit 6

bit 7 +l
01000000 (64)

+ 01000001 (65)

= 10000001 (- 127)

An internal carry has been generated from bit 6 into bit 7. This is called an

overflow. The result is now negative, "by accident." This situation must be

detected so that it can be corrected.

BASIC CONCEPTS 13

+ Two's complement code - Two's complement code

+ 127 01111111 - 128 10000000

+ 126 01111110 - 127 10000001

+ 125 01111101 - 126 10000010

... - 125 10000011

. ..
+65 01000001 - 65 10111111

+ 64 01000000 - 64 11000000

+ 63 00111111 - 63 11000001

.
+ 33 00100001 - 33 11011111

+ 32 00100000 - 32 11100000

+31 00011111 - 31 11100001

.

+ 17 00010001 - 17 11101111

+ 16 00010000 - 16 11110000

+ 15 00001111 - 15 11110001

+ 14 00001110 - 14 11110010

+ 13 00001101 - 13 11110011

+ 12 00001100 - 12 11110100

+ 11 00001011 - 11 11110101

+ 10 00001010 - 10 11110110

+ 9 00001001 - 9 11110111

+ 8 00001000 - 8 11111000

+ 7 00000111 - 7 11111001

+ 6 00000110 - 6 11111010

+ 5 00000101 - 5 11111011

+ 4 00000100 - 4 11111100

+ 3 00000011 - 3 11111101

+ 2 00000010 - 2 11111110

+ 1 00000001 - 1 11111111

+ 0 00000000

Table 1.2: Two's Complement Table

14 PROGRAMMING THE 65816

Let's examine another situation:

11111111 (-1)
+ 11111111 (-1)

(1)11111110 (-2)

y
carry

In this case, an internal carry has been generated from bit 6 into bit 7, and

also from bit 7 into C. The rules of two's complement arithmetic specify

that this carry should be ignored. The result is then correct. This is

because the carry from bit 6 to bit 7 did not change the sign bit.

The carry from bit 6 into bit 7 is not an overflow condition. When oper­

ating on negative numbers, the overflow is not simply a carry from bit 6

into bit 7. Let's examine one more example:

11000000
+ 10111111

(-64)

(-65)

(1)01111111 (+ 127)

y
carry

This time, there has been no internal carry from bit 6 into bit 7, but there

has been an external carry. The result is incorrect, as bit 7 has been

changed. An overflow condition should be indicated.

Overflow can occur in four situations:

1. Addition of large positive numbers

2. Addition of large negative numbers

3. Subtraction of a large positive number from a large negative number

4. Subtraction of a large negative number from a large positive number

Let me now improve the definition of overflow.

Technicall)I the overflow indicator, a special bit reserved for this purpose

and called a status flag, is set when there is a carry from bit 6 into bit 7, and

there is no external carry. It is also set when there is no carry from bit 6 into

bit 7, but there is an external carry. This indicates that bit 7 (the sign of the

result) has been accidentally changed. For the technically minded reader, the

overflow flag is set by applying exclusive-OR to the carry-in and carry-out of

bit 7 (the sign bit). Practically every microprocessor is supplied with a special

BASIC CONCEPTS 15

overflow flag to automatically detect this condition-a condition that requires
corrective action.

Overflow indicates that the result of an addition or subtraction requires
more bits than are available in the standard 8-bit register used to contain
the result.

The Carry and the Overflow The carry and the overflow bits are called
status flags. They are provided in every microprocessor. You will learn to
use them for effective programming in Chapter 2. These two indicators
are located in a special register called the flags or the status register. This
register also contains additional indicators (as described in Chapter 4).

Examples I'll now give actual examples that illustrate the operation of the
carry and the overflow. In each example, V denotes the overflow and C
denotes the carry. If there has been no overflow, V = O; if there has been
an overflow, V = 1. (The same is true for the carry C.) Remember that
the rules of two's complement specify that the carry be ignored. (The
mathematical proof is not supplied here.) Consider the following
examples:

Positive-Positive

00000110
+ 00001000

= 00001110
(CORRECT)

(+6)
(+8)

(+14) V:O C:O

Positive-Positive with Overflow

01111111 (+127)
+ 00000001 (+ 1)
= 10000000 (-128) V:l C:O
The above is invalid because an overflow has occurred.
(ERROR)

Positive-Negative(result positive)

00000100
+ 11111110

= (1)00000010
(CORRECT)

(+4)
(-2)

(+ 2) V:O C: 1 (disregard)

16 PROGRAMMING THE 65816

Positive-Negative (result negative)

00000010
+ 11111100

= 11111110
(CORRECT)

(+2)
(-4)

(-2) V:O C:O

Negative-Negative

11111110 (- 2)

+ 11111100 (- 4)

= (1)11111010

(CORREcn
(- 6) V:O C:1 (disregard)

Negative-Negative with Overflow

10000001
+ 11000010

= (1)01000011
(ERROR)

(-127)
(-62)

(+67) V:1 C:1

In the last example, an underflow has occurred, by adding two large negative

numbers. The result is -189, which is too large to reside in eight bits.

Fixed Format Representation You now know how to represent signed inte­

gers; however, I have not yet resolved the problem of magnitude. If you want

to represent larger integers, you need several bytes. To perform arithmetic

operations efficiently, you must use a fixed number of bytes, rather than a

variable one. Therefore, once you have chosen the number of bytes, the

maximum magnitude of the number that can be represented is fixed.

The Magnitude Problem When adding numbers, I've restricted discussion to

eight bits, because the processor can operate internally on eight bits at a time

and 8-bit examples are easier to understand. However, this restricts you to

the numbers in the range -128 to + 127. Clearly, this is not sufficient for

many applications. The processor can also operate in a 16-bit mode, allowing

a range of - 32768 to + 32767.

You can use multiple precision to increase the number of digits that can be

represented. You can then use a two-, three-, or n-byte format. For example,

let's examine a 16-bit, double-precision format:

01111111
11111111
11111111

cxxxxxro
OOCXJ0001

11111111
11111111
11111110

is 0
is 1

is 32767
is -1
is -2

BASIC CONCEPTS 17

However, this method does have a disadvantage. When adding two num­
bers, for example, you generally have to fetch them from memory eight bits
at a time, as explained in Chapter 2. This results in slower processing. Also,
this representation uses 16 bits for any number, even if it could be repre­
sented with only eight bits. It is, therefore, common to use the smallest num­
ber of bytes possible.

Consider the following important point: the number of bits, n, chosen for
the two's complement representation is usually fixed for that program. If any
result or intermediate computation should generate a number that requires
more than n bits, some bits will be lost. The program normally retains the n
leftmost bits (the most significant) and drops the low-order ones. This is called
truncating the result.

Let's look at an example in the decimal system, using a six-digit representa­
tion:

123456
x 1.2

246912
123456

= 148147.2

The result requires seven digits. The 2 after the decimal point will be
dropped, and the final result will be 148147. It has been truncated. Usually, as
long as the position of the decimal point is not lost, this method is used to
extend the range of the operations that can be performed, at the expense of
precision. (The details of binary multiplication are given in Chapter 3.) The
problem is the same in binary. This fixed-format representation may cause a
loss of precision, but it may be sufficient for usual computations or mathemat­
ical operations.

Unfortunately, in the case of accounting, no loss of precision is tolerable.
For example, if a customer rings up a large total on a cash register, it would
not be acceptable to have a five-figure total approximated to the dollar. Thus,

18 PROGRAMMING THE 65816

you must use another representation whenever precision in the result is

essential. The solution normally used is BCD, or binary-coded decimal.

BCD Representation The principle used in representing numbers in BCD is

to encode each decimal digit separately and use as many bits as necessary

to represent the complete number exactly. To encode each of the digits

from 0 through 9, four bits are necessary. Three bits supply only eight

combinations, and so cannot encode the ten digits. Four bits allow 16

combinations and are, therefore, sufficient to encode the digits 0 through

9. Note also that six of the possible codes are not used in the BCD repre­

sentation (see Table 1.3). This will become a problem when you perform

additions and subtractions. Since only four bits are needed to encode a

BCD digit, you may encode two BCD digits in every byte. This is called

packed BCD. As an example, 00000000 is 00 in BCD, and 10011001 is 99.

CODE BCD SYMBOL CODE BCD SYMBOL

()()()() 0 1000 8

0001 l 1001 9

0010 2 1010 unused

0011 3 1011 unused

0100 4 1100 unused

0101 5 1101 unused

0110 6 1110 unused

Olll 7 1111 unused

Table 1.3: BCD Table

You read a BCD code as follows:

0010 0001
BCD digit 2 ___ I
BCD digit 1_ ____ _._

BCD number 21

You use as many bytes as necessary to represent all BCD digits. T ypi­

cally, one or more nibbles are used at the beginning of the representation

BASIC CONCEPTS 19

to indicate the total number of nibbles-the total number of BCD digits
used. Another nibble or byte denotes the position of the decimal point.
However, conventions may vary. Here is an example of a representation
for multibyte BCD integers:

3

number of tigits
(up to 255)

+ 2 2 (3 bytes)

number 221

This example represents + 221. (The sign may be represented by 0000 for
+ , and 0001 for - , for example.)

The BCD representation can easily accommodate decimal numbers. For
example, + 2.21 may be represented by:

3 2 + 2 2

+ + + 3 digits "."is on the + 221
left of digit 2

The advantage of BCD is that it yields absolutely correct results. Its disad­
vantage is that it uses a large amount of memory and results in slow
arithmetic operations. This is acceptable only in an accounting environ­
ment, but BCD is normally not used in other cases.

The problems associated with the representation of integers, signed inte­
gers, and large integers have now been solved. I have even presented one
possible method of representing decimal numbers, with BCD representa­
tion. Now, I'll examine the problem of representing decimal numbers in
fixed-length format.

Floating-Point Representation The basic principle of floating-point represen­
tation is that decimal numbers are represented with a fixed-length format.
To avoid wasting bits, the representation normalizes all the numbers. For
example, 0.000123 wastes three zeros on the left before nonzero digits.
These zeros have no meaning except to indicate the position of the deci­
mal point. Normalizing this number results in .123 x 10- 3, where .123 is
the normalized mantissa and - 3 is the exponent. You normalize this num­
ber by eliminating all the meaningless zeros to the left of the first nonzero

20 PROGRAMMING THE 65816

31

Is;
Figure 1.2:

digit and by adjusting the exponent. Consider another example:

Example: 22.1 is normalized as .221 x 10 2 • The general form of

floating-point representation is M x 1QE; where M is the mantissa and Eis

the exponent.
You can readily see that a normalized number is characterized by a man­

tissa less than 1 and greater than or equal to .1 in all cases where the number

is not zero. In other words, you can represent it mathematically by:

.1 ~M < 1 or 10- 1 ~M < 1C>°

Similarly, in binary representation:

2-1 ~M < 2° or .5 ~M < 1

where M is the absolute value of the mantissa (disregarding the sign). For

example:

111.01 is normalized as: .11101 x 23

The mantissa is .11101. The exponent is 3.

Now that I have defined the principle of the representation, let's exam­

ine the actual format. A typical floating-point representation appears in

Figure 1.2.

24 23 16 15 8 7 0

EXP Is; M: A N T :s s A I
Typical Floating-Point Representation

In the representation in Figure 1.2, four bytes are used, for a total of 32

bits. The first byte on the left of the illustration is used to represent the

exponent. Both the exponent and the mantissa are represented in two's

complement. As a result, the maximum exponent is - 128. S in Figure 1.2

denotes the sign bit.
Three bytes are used to represent the mantissa. Since the first bit in the

two's complement representation indicates the sign, this leaves 23 bits for

the representation of the magnitude of the mantissa.

This is only one example of a floating-point representation. You can use

only three bytes, or you can use more. The four-byte representation pro­

posed above is a common one and represents a reasonable compromise

BASIC CONCEPTS 21

in terms of accuracy, magnitude of numbers, storage utilization, and effi­
ciency in arithmetic operation.

I have now explored the problems associated with the representation of
numbers and have shown you how to represent them in integer form,
with a sign, or in decimal form. Let's now go on to examine how to repre­
sent alphanumeric data internally.

Representing Alphanumeric Data
The representation of alphanumeric data-characters-is completely
straightforward: all characters are encoded in an 8-bit code. Only two
codes are in general use in the computer world; the ASCII code and the
EBCDIC code. ASCII stands for American Standard Code for Information
Interchange, and it is universally used in the world of microprocessors.
EBCDIC is a variation of ASCII used by IBM, and is, therefore, not used in
the microcomputer world unless you interface to an IBM terminal.

Let's briefly examine the ASCII encoding. It encodes 26 letters of the
alphabet for both uppercase and lowercase, plus 10 numeric symbols,
and perhaps 20 additional special symbols. This is easily accomplished
with seven bits, which allow 128 possible codes. (See Table 1.4.) All char­
acters are, therefore, encoded in seven bits. The eighth bit, when it is
used, is the parity bit. Parity is a technique for verifying that the contents
of a byte have not been accidentally changed. The number of ones in the
byte are counted and the eighth bit is set to one if the count is odd, thus
making the total even. This is called even parity. Odd parity-writing the
eighth bit (the leftmost bit) so that the total number of ones in the byte is
odd-can also be used.

As an example, let's compute the parity bit for 0010011 using even par­
ity. The number of ones is 3. The parity bit must, therefore, be a one, so
that the total number of bits will be 4-that is, even. The result is
10010011, where the leading 1 is the parity bit and 0010011 identifies the
character.

The table of 7-bit ASCII codes is shown in Table 1.4. In practice, it is
used "as is"; that is, without parity, by adding a zero in the leftmost posi­
tion, or else with parity, by adding the appropriate extra bit on the left.

In specialized situations, such as telecommunications, you may use
other codings, such as error-correcting codes. However, descriptions of
these codings are beyond the scope of this book.

Now that you have seen the usual representations for both program
and data inside the computer, let's examine the possible external represen­
tations.

22 PROGRAMMING THE 65816

HEX MSD 0 l 2
010

3 4 5 6 7
LSD BITS 000 001 011 100 101 110 111

0
l
2
3
4
5
6
7
8
9
A
B
c
D
E
F

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
lllO
1111

NUL OLE
SOH DCl
STX DC2
ETX DC3
EOT DC4
ENQ NAK
ACK SYN
BEL ETB
BS CAN
HT EM
LF SUB
VT ESC
FF FS
CR GS
SO RS
SI US

SPACE

$
%
&

*
+

I

0
l
2
3
4
5
6
7
8
9

' <

>
?

@
A
B
c
D
E
F
G
H
I
J
K
L

M
N
0

p

Q
R
s
T
u
v
w
x
y
z
[
\
]

"

a
b
c
d
e
f
g
h

i
k
I

m
n
0

p
q
r
s
t
u
v
w
x
y
z
{

}

DEL

Table 1.4: ASCII Conversion Table (see Appendix B for abbreviations)

EXTERNAL REPRESENTATION OF INFORMATION
The external representation of information refers to the way information is
presented to the user, who is generally the programmer. Information can
be presented externally in essentially three formats: binary, octal or hexa­
decimal, and symbolic. Let's examine these formats.

Binary You have seen that information is stored internally in bytes, which are
sequences of eight bits (zeros or ones). It is sometimes desirable to display
this internal information directly in its binary format-this is known as
binary representation. A simple example is provided by light-emitting
diodes (LEDs), which are essentially miniature lights on the front panel of
the microcomputer. In the case of an 8-bit microprocessor, a front panel is
typically equipped with eight LEDs to display the contents of any internal
register. A lighted LED indicates a one. An unlighted LED indicates a zero.
You may use such a binary representation for the fine debugging of a
complex program, especially if it involves input/output, but it is naturally
impractical at the human level. This is because, in most cases, it is easier
to look at information in symbolic form. For example, 9 is much easier to

BASIC CONCEPTS 23

understand and to remember than 1001. More convenient representa­
tions have been devised that improve the interface between people and
machines.

Octal and Hexadecimal Octal and hexadecimal encode three and four
binary bits, respectively, into a unique symbol. Octal is a format using
three bits, where each combination of three bits is represented by a sym­
bol between 0 and 7. (See Table 1.5.)

Binary Octal

000 0

001 1

010 2

011 3

100 4

101 5

110 6

111 7

Table 1.5: Octal Symbols

For example, 00 100 100 binary is represented by:

' ' ' 0 4 4

or 044 in octal.
As another example: 11

or 377 in octal.
' 3

111 111 is:

' ' 7 7

Conversely, the octal 211 represents

010 001 001

or 10001001 binary.

24 PROGRAMMING THE 65816

Octal has traditionally been used on older computers that employ vari­
ous numbers of bits, ranging from 8 to, perhaps, 64. More recently, with
the dominance of byte addressed microprocessors, the 8-bit format has
become the standard, and another, more practical, representation is
used-hexadecimal representation.

In the hexadecimal representation, a group of four bits is encoded as
one hexadecimal digit. Hexadecimal digits are represented by the symbols
from 0 to 9, and by the letters A, B, C, D, E, F. For example, 0000 is repre­
sented by O; 0001 is represented by 1; and 1111 is represented by the let­
ter F (see Table 1.6).

For example, 1010 0001 in binary is represented by
L_-) l..._,,J

A 1

in hexadecimal:

DECIMAL BINARY HEX

0 0000 0

l 0001 l

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

10 1010 A

11 1011 B

12 1100 c
13 1101 D

14 1110 E

15 1111 F

Table 1.6: Hexadecimal Codes

OCTAL

0

l

2

3

4

5

6

7

10

11

12

13

14

15

16

17

BASIC CONCEPTS 25

Hexadecimal offers the advantage of encoding eight bits into only two
digits. This is easier to visualize or memorize and faster to type into a
computer than its binary equivalent. Therefore, on most new microcom­
puters, hexadecimal is the preferred method of representation for groups
of bits.

Naturally, whenever the information present in the memory has a
meaning, such as representing text or numbers, hexadecimal is not con­
venient for representing the meaning of this information for a human user.

Symbolic Representation Symbolic representation refers to the external rep­
resentation of information in actual symbolic form. For example, decimal
numbers are represented as decimal numbers, and not as sequences of
hexadecimal symbols or bits. Similarly, text is represented as such. Natu­
rally, symbolic representation is most practical for the user. You use it
whenever an appropriate display device is available, such as a CRT dis­
play or a printer. (Unfortunately, in smaller systems such as one-board
microcomputers it is uneconomical to provide such displays, and you are
restricted to hexadecimal communication with the computer if the com­
puter cannot communicate with a terminal.)

Summary of External Representations
Symbolic representation of information is the most desirable, since it is the
most natural for a human user. However, it requires an expensive inter­
face in the form of an alphanumeric keyboard, plus a printer or a CRT dis­
play. For this reason, it may not be available on the less expensive systems.
An alternative type of representation is then used, and in such a case,
hexadecimal is the dominant representation. Only in rare cases, relating
to fine debugging at the hardware or software level, is the binary repre­
sentation used. Binary directly displays the contents of the registers or
memory in binary format.

Now that you have seen how information is represented internally and
externally, I will discuss the actual microprocessor that manipulates this
information in Chapter 2.

EXERCISES

1-1: What is the decimal value of 11111100?

1-2: What is the binary for 257?

1-3: Convert 19 to binary, then back to decimal.

26 PROGRAMMING THE 65816

1-4: Compute 5 + 10 in binary. Verify that the result is 15.

1-5: Compute the result of:

1111
+ 0001

Does the result fit into four bits?

1-6: What is the representation of -5 in signed binary?

1-7: The representation of +6 is 00000110. What is the representation of

- 6 in one'.s complement?

1-8: What is the two'.s complement representation of+ 127?

1-9: What is the two'.s complement representation of - 128?

1-10: What are the smallest and the largest numbers that can be repre­

sented in two'.s complement notation, using only one byte?

1-11: Compute the two'.s complement of 20. Then compute the two'.s com­
plement of your result. Do you find 20 again?

1-12: Complete the following additions. Indicate the result, the carry C, the

overflow V, and whether the result is correct or not:

10111111 (_) 11111010 (_)
+ 11000001 (_) + 11111001 (_)

V: _C:_ V: _C: -
_CORRECT - ERROR _CORRECT - ERROR

00010000 (_) 01111110 (_)
+ 01000000 L_) + 00101010 L_)

V:_C:_ V: _C: -
_CORRECT - ERROR _CORRECT - ERROR

1-13: Can you show an example of overflow when adding a positive and a
negative number? Why or why not?

1-14: What are the largest and the smallest numbers that can be repre­

sented in two bytes, using two'.s complement?

BASIC CONCEPTS 27

1-15: What is the largest negative integer that can be represented in a two's
complement triple-precision (24-bit) format?

1-16: What is the BCD representation for 29? for 97?

1-17: Is 10100000 a valid BCD representation? Why or why not?

1-18: Using the same convention, represent -23123. Show it in BCD for­
mat, as above, then in binary.

1-19: Show the BCD for 222 and 111, then for the result of 222 x 111
(Compute the result by hand, then show it in the above representation.)

1-20: How many bits are required to encode 9999 in BCD? In two's com­
plement?

1-21: How many decimal digits can the mantissa represent with the 23 bits?

1-22: Compute the 8-bit representation of the digits 0 through 9, using
even parity. (This code will be used in application examples of Chapter 8.)

1-23: Complete Exercise 1-22 for the letters A through F.

1-24: Using a nonparity ASCII code (where the leftmost bit is 0), indicate
the binary contents of the four characters below:

A

3
b

1-25: What is the hexadecimal representation of 70707070?

1-26: Conversely, what is the binary equivalent of FA hexadecimal?

1-27: What is the octal representation of 01000001?

1-28: What is the advantage of two'.s complement over other representa­
tions used for signed numbers?

1-29: How would you represent 1024 in direct binary? Signed binary?
Two'.s complement?

28 PROGRAMMING THE 65816

1-30: What is the V bit? Should the programmer test it after an addition or

subtraction?

1-31: Compute the twos complement of + 16, + 17, + 18, -16, -17, and

-18.

1-32: Show the hexadecimal representation of the following text, which has

been stored internally in ASCII format, with no parity:

MESSAGE

2

TO PROGRAM EFFICIENTLY, you must understand the internal structure
of the processor you are using. I will begin this chapter with a discussion
of the basic architecture of a microcomputer system. I will then examine
the internal organization of the 65816. In particular, I will study the regis­
ters of the 65816 and their combined operations. This study is particularly
important, because the 65816 has an unusually large number and variety
of registers.

SYSTEM ARCHITECTURE

Figure 2.1 shows the architecture of a typical microcomputer system.
Appearing on the left of the illustration in Figure 2.1 is the microprocessor
unit (the MPU)-in this case the 65816-which implements the functions
of the central-processing unit (the CPU) on a single chip. The CPU
includes an arithmetic-logical unit (the ALU), plus its internal registers, and
a control unit (the CU), which decodes and internally sequences instruc­
tions. (I will discuss the CPU in detail later in this chapter.)

The MPU has three buses: an 8-bit bidirectional data bus (shown at the
top of the illustration in Figure 2.1), a 16-bit unidirectional address bus,
and a control bus (both shown at the bottom of the illustration). I will now
discuss the functions of these buses.

The data bus carries the data that is exchanged by the various elements
of the system. Typically, it carries the data from the memory to the MPU,
from the MPU to the memory, and from the MPU to an input/output chip.
(An input/output chip communicates with an external device.)

32 PROGRAMMING THE 65816

CLOCK
DATA BUS

<I>

+5
Port
A

65816

r---+--<T J "'

+sv GND

Figure 2.1: A Standard 65816 System

CONTROL BUS

Port
B

The address bus carries an address, generated by the MPU, that speci­
fies the source or destination of the data that transits along the data bus.
The control bus carries the various synchronization signals required by
the system. Now that you know the purpose of the buses, let's connect
the additional components required for a complete system.

Every MPU requires a precise timing reference, which is supplied by a
clock. The clock appears on the left of the MPU box in Figure 2.1.

I will now describe the other elements of the system. Going from left to
right on the illustration, you see the ROM, the RAM, and the PIO.

The ROM or read-only memory stores the program for the system. The
advantage of ROM memory is that its contents are permanent: they do
not disappear when the system is turned off. The ROM, therefore, usually
contains a bootstrap or monitor program to permit initial system opera­
tion. In a process-control environment, nearly all programs reside in
ROM. This is because they will probably never be changed and must be
protected against power failures (they must not be volatile).

The RAM or random-access memory is the read/write memory for the
system. In a hobbyist or program-development environment, most of the

65816 HARDWARE ORGANIZATION 33

programs reside in RAM so that they can be easily changed. Such pro­
grams may be kept in RAM, or transferred into ROM, if desired. RAM,
however, is volatile. Its contents are lost when power is turned off. In a
control system, the amount of RAM is typically small (for data only); how­
ever, in a program-development environment, the amount of RAM is
large, as it contains programs plus development software. All RAM con­
tents must be loaded, prior to use, from an external device.

Finally, a system also contains one or more interface chips, so that it can
communicate with the external world. The most frequently used interface
chip is the PIO or parallel input/output chip (shown in Figure 2.1). The
PIO, like the other chips in the system, connects to all three buses and
provides at least two 16-bit ports for communication with the outside
world. For simplicity, the connections between the control bus and the
various chips do not appear in Figure 2.1.

The functional modules just described need not necessarily reside on a
single LSI chip. In fact, you could use combination chips, which may
include both the PIO and a limited amount of ROM or RAM.

To build an actual system, you need even more components. In particu­
lar, you may need to buffer the buses. Also, you may need decoding logic
for the memory RAM chips, and, finally, you may use drivers to amplify
signals. I won't describe these auxiliary circuits here, as they are not rele­
vant to programming. For more information on specific assembly and
interfacing techniques, see reference C207, and for specific information
regarding the 65816 system, see Chapter 7.

/NS/DE A MICROPROCESSOR

Several microprocessors on the market today implement the same inter­
nal architecture. Figure 2.2 shows this architecture. Going from right to
left, I will now describe the different modules making up this architecture.

The control box on the right of the illustration represents the control
unit that synchronizes the entire system. I will describe the role of the
control unit later in this chapter.

The ALU performs arithmetic and logical operations. Special registers,
called accumulators, are usually connected to the output of the ALU. The
accumulators contain the results of arithmetic operations. Each accumula­

tor has eight bits.
The ALU also provides shift and rotate facilities. As illustrated in Figure

2.3, a shift moves the contents of a byte by one or more positions to the

34 PROGRAMMING THE 65816

DATA BUS (8 BITS)

PC s

H

EXTERNAL
DATA
BUS (8 BITS)

A
c

R c
I E u
NG M

D I u
E S l
X T A

E T
R 0

R
s

Figure 2.2: Internal Architecture of a "Standard" Microprocessor

c
0
N
T
R
0
l

left or right. In this illustration, each bit has been moved to the left by one
position. The shifter may be on the ALU output, as illustrated in Figure
2.2, or on the accumulator input. I will describe shift and rotate opera­
tions in more detail in Chapter 3.

The status (or condition code) register appears to the left of the ALU. Its
role is to store exceptional conditions within the microprocessor. The con­
tents of the status register can be tested by specialized instructions, or
read onto the internal data bus. A conditional instruction causes the exe­
cution of a different part of the program, depending on the value of one
of the bits in the status register (as shown later).

SETTING STATUS FLAGS
Most of the instructions executed by the microprocessor modify some or
all of the status bits. Refer to the chart provided by the manufacturer to
learn which bits are modified by what instructions. This information is

65816 HARDWARE ORGANIZATION 35

SHIFT LEFT

0

CARRY

ROTATE LEFT

Figure 2.J: Shift and Rotate

essential for understanding the way a program is executed. Appendix D
lists this information for the 65816.

THE ADDRESS REGISTERS
Address registers are 16-bit registers used for the storage of addresses.
They are also often called data counters or pointers and are double regis­
ters: two 8-bit registers. They are connected to the address bus. The
address registers provide the signals for the address bus. Three address
registers and an address bus appear in Figure 2.4.

The only way to load the contents of these 16-bit registers is via the data
bus (also shown in the illustration). To differentiate between the lower and
higher half of each register, each half is usually labeled as L (low) or H
(high), denoting bits 0 through 7, or 8 through 15, respectively. Let's exam­
ine the three registers shown in the illustration.

The Program Counter (PC)
The program counter must be present in all processors, as it is indispen­
sable and fundamental to program execution. It contains the address of
the next instruction to be executed.

36 PROGRAMMING THE 65816

DATA BUS

A
c

p c p R c
R 0 s 0 I E u
OU T I NG 16-BIT M

GN AN D I ADDRESS
u

R T C T E S REGISTERS
L

A E K E X T A

MR R E T
R 0

R
s

ADDRESS BUS (16 BITS)

Figure 2.4: The 16-Bit Address Registers Create the Address Bus

Execution of a program is normally sequential. To access the next
instruction, the program must bring it from the memory into the micro­
processor. The contents of the PC are deposited on the address bus and
transmitted toward the memory. The memory then reads the contents
specified by this address and sends the corresponding word or instruction
back to the MPU. In a few exceptional microprocessors, such as the two­
chip FB, there is no PC on the microprocessor. This does not mean, how­
ever, that there is not a program counter; for reasons of efficiency, the PC
is implemented directly on the memory chip.

The Stack Pointer (S)
The stack pointer is used to implement the stack. The stack is described in
detail in the next section.

In most powerful, general-purpose microprocessors, the stack is imple­
mented in software-within the memory. To keep track of the top of the
stack within the memory, a 16-bit register is dedicated to the stack pointer.
The S contains the address of the top of the stack within the memory. The
stack is indispensable for interrupts and subroutines.

65816 HARDWARE ORGANIZATION 37

The Index Register (IR)
Indexing is a memory-addressing facility for accessing blocks of data in the
memory with a single instruction. It is not always provided in micropro­
cessors. An index register typically contains a displacement, which will
automatically be added to a base (or it might contain a base, which will be
added to a displacement). In short, indexing is used to access any word
within a block of data.

THE STACK
A stack, formally called an LIFO (last-in, first-out) structure, is a set of regis­
ters, or memory locations, allocated to the stack data structure. The essen­
tial characteristic of the stack is that it is a chronological structure. The first
element introduced in the stack is always at the bottom of the stack; the
element most recently deposited is on the top. An analogy can be drawn
with a stack of plates on a restaurant counter, if you assume there is a hole
in the counter with a spring at the bottom, and plates are piled up in the
hole. With this organization, the plate that has been put first in the stack is
always at the bottom. The one most recently placed on the stack is the
one on top. This example also illustrates another characteristic of the
stack. In normal use, a stack is only accessible via two instructions: PUSH
and PULL (or POP). These two instructions are illustrated in Figure 2.5.
The PUSH operation deposits one element on top of the stack; the PULL
operation removes elements from the stack. In the case of a micropro­
cessor, it is the registers that are deposited on top of the stack. The PULL
transfers the top element of the stack into the register specified in the
instruction. Other specialized instructions may transfer the top of the stack
into other specialized registers, such as the status register. The 65816 is
more versatile than most in this respect.

A stack is required for implementing three programming facilities within
the computer system: subroutines, interrupts, and temporary data storage.
At this point, simply assume that the stack is a required facility in every
computer system. The stack may be implemented in two ways:

1 . As a hardware stack, where a fixed number of registers may be pro­
vided within the microprocessor itself. A hardware stack has the
advantage of high speed; however, it has the disadvantage of a lim­
ited number of registers.

2. As a software stack. So as not to restrict the stack to a small number of
registers, most general-purpose microprocessors, including the 65816,
choose the software stack. With the software approach, a dedicated
register within the microprocessor, here register S, stores the stack

38 PROGRAMMING THE 65816

MICROPROCESSOR
REGISTER 7 MEMORY 0 ,-------- [____ J 1 7 0

I DATA

I PUSH__..

I
I .. PULL

I
I is o

ADDRESS

Figure 2.5: The Two-Stack Manipulation Instructions

pointer-the address of the top element of the stack (or, in some cases,
the address of the top element of the stack, plus one). The stack is then
implemented as an area of memory. The stack pointer, therefore,
requires 16 bits to point anywhere in the memory.

THE INSTRUCT/ON EXECUTION CYCLE
Let's now examine Figure 2.6, where you fetch an instruction from the
memory to illustrate the role of the program counter. The MPU appears
on the left of the illustration, and the memory appears on the right. The
memory stores instructions and data. The memory chip may be a ROM or
a RAM, or any other chip that happens to contain memory.

Assume that the program counter has valid contents. It now holds a 16-
bit address, which is the address of the next instruction to fetch in the
memory.

Every processor proceeds in three cycles:

1. Fetching the next instruction

2. Decoding the instruction

3. Executing the instruction

Let's now follow this sequence.

65816 HARDWARE ORGANIZATION 39

MPU ROM/RAM

PC
PC: INSTRUCTION

Figure 2.6: Fetching an Instruction from the Memory

Fetching
In the first cycle, the contents of the program counter are deposited on
the address bus and gated to the memory (on the address bus). Simultane­
ously, a read signal may be issued on the control bus of the system, if
required. The memory receives the address. The address is used to spe­
cify one location within the memory. Upon receiving the read signal, the
memory decodes, through internal decoders, the address it has received
and selects the location specified by the address. A few hundred nano­
seconds later, the memory deposits the 8-bit data corresponding to the
specified address on its data bus. This 8-bit word is the instruction you
want to fetch. In the illustration in Figure 2.7, this instruction is deposited
on the data bus.

Let's briefly summarize the sequence. The contents of the program
counter are output on the address bus. A read signal is generated. The
memory reads, and approximately 300 nanoseconds later, the instruction
at the specified address is deposited on the data bus (assuming a single­
byte instruction). The microprocessor then reads the data bus and
deposits its contents into a specialized internal register, the JR or instruc­
tion register. The IR is eight bits wide and is used to contain the instruction
just fetched from the memory.

The fetch cycle is now completed. The eight bits of the instruction are
now in the instruction register. The IR appears on the left of Figure 2.7. It
is not accessible to the programmer.

40 PROGRAMMING THE 65816

MPU

IR

SIGNALS

MEMORY

READ MEMORY
r-----...iCONTROL

MEMORY
PROPER

0

2304

~--~------tO

t ADDRESS
DECODER

'----~-------'
ADDRESSES

Figure 2.1: Automatic Sequencing

Decoding and Executing
Once the instruction is in the IR, the control unit of the microprocessor

decodes the contents and generates the correct sequence of internal and

external signals for the execution of the specified instruction. There is, there­

fore, a short decoding dela~ followed by an execution phase, the length of

which depends on the nature of the instruction specified. Some instructions

execute entirely within the MPU. Others fetch or deposit data from or into

the memory. This is why the instructions of the MPU require various lengths

of time to execute. This duration is expressed as a number of (clock) cycles.

Appendix E lists the number of cycles required by each instruction. Since var­

ious clock rates may be used, speed of execution is normally expressed in

number of cycles, rather than in number of nanoseconds.

65816 HARDWARE ORGANIZATION 41

FETCHING THE NEXT INSTRUCTION
I have described how an instruction can be fetched from the memory
using the program counter. During the execution of a program, instruc­
tions are fetched, in sequence, from the memory. An automatic mecha­
nism must, therefore, be provided to fetch instructions in sequence. This
task is performed by a simple incrementer attached to the program
counter, as illustrated in Figure 2.7. Every time the contents of the pro­
gram counter are placed on the address bus, the contents are incre­
mented and written back into the program counter. As an example, if the
program counter contains the value 0, the value 0 is output on the
address bus. The contents of the program counter are then incremented,
and the value 1 is written back into the program counter. In this way, the
next time the program counter is used, it is the instruction at address 1
that is fetched. You have just implemented an automatic mechanism for
sequencing instructions.

I must stress that the above descriptions are simplified. In reality, some
instructions may be two or even three bytes long, so that successive bytes
will be fetched in this manner from the memory. However, the fetch
sequence is identical. The program counter is used to fetch successive
bytes of an instruction, as well as successive instructions. The program
counter, together with its incrementer, provides an automatic mechanism
for pointing to successive memory locations.

/ NTERNAL ORGANIZATION OF THE 65816

Now that you understand the internal organization of a microprocessor, I
will examine the 65816 in particular and describe its capabilities. Figure
2.8 presents a logical description of the internal workings of the 65816.
There may be additional interconnections that are not shown. Let's exam­
ine the diagram.

In the center of the illustration, you see the arithmetic-logical unit (the ALU),
recognizable by its characteristic V shape. The operation of the ALU will
become clear in the next section, when I describe the execution of actual
instructions. The processor status register, called P in the 65816, appears
above and to the right of the ALU. The contents of the processor status regis­
ter are essentially conditioned by the ALU; however, some of its bits may also
be conditioned by other modules or events (see Chapter 4).

The two registers to the left of the ALU are the accumulators, A and B.
The accumulators are 8-bit registers, but when the 65816 is in the 16-bit

42 PROGRAMMING THE 65816

x y

INSTRUCTION
REGISTER

B A

DECODER
CONTROLLER I /L--->...
SEQUENCER

PC D

B ~~~RESS
,......,,L-_ _ __;_:l6c..:-BC'-IT;...::AD:=D;.::RE=SSc..:B.=.:US:..__ _________ __:,,t_:..__..:::.t.._ _____ --I~ 16 BITS

~--------------------------'F

Figure 2.8: Internal Organization of the 65816

E
R

mode, they are used together to form the 16-bit C accumulator. Thus, the

C accumulator is formed by using the A accumulator as the low byte, bits
0 to 7, and the B accumulator as the high byte, bits 8 to 15. The 16-bit

mode for the accumulator is selected by setting the M bit to 0 in the P reg­

ister. If only 8-bit data is used in a program, the 8-bit accumulator mode is

more efficient because only one byte of data needs to be transferred for

each operation with the accumulator and memory.
The register immediately to the right of the ALU is the program counter

(PC). Recall that the program counter contains the address of the next

instruction to be executed. The register shown next to the PC is the direct
page register, labeled D. The D register is a 16-bit register used to address

pages of memory. A page is simply a block of 256 words. Thus, memory

locations 0 to 255 are page 0 of the memory. Since the 65816 has a 16-bit

address bus, there are 256 pages. The D register is added to an 8-bit

address in the instruction to form a 16-bit address. The D register allows

you to produce faster and more compact programs when using blocks of

65816 HARDWARE ORGANIZATION 43

memory smaller than 256 bytes, especially when the low eight bits of the
D register are 0.

To the left of the accumulators are additional address registers. The
stack pointer (S) points to the top of the stack in memory. In the case of
the 65816, the stack pointer points to the next available entry in the stack.
(In some microprocessors, the stack pointer points at the last entry.) Also,
the stack grows downward-toward the lower addresses. This means that
the stack pointer must be decremented any time a new word is pushed
onto the stack. Conversely, whenever a word is removed (pulled) from the
stack, the stack pointer must be incremented by one. In the case of the
65816, push and pull instructions involve up to two bytes at the same
time, so that the contents of the stack pointer are decremented or incre­
mented by 1 or 2.

Looking at the remaining two registers of the group, you can find
another type of register: the index register. The two index registers are
labeled X and Y. A byte brought along the internal data bus may be added
to the contents of X or Y. When using an indexed instruction, this byte is
called a displacement. Special instructions are provided that will automati­
cally add this displacement to the contents of X or Y and generate an
address. This is called indexing, as it allows convenient access to any
sequential block of data. This feature is also applicable to the S address
register.

Now look at the top of the illustration, where the control section of the
microprocessor is located. At the top, you find the instruction register (IR),
which contains the instruction to be executed. The instruction is received
from the memory via the data bus and transmitted along the internal data
bus to the instruction register. Next to the instruction register appears the
decoder, which sends signals to the controller sequencer and causes the
execution of the instruction within, as well as outside, the microprocessor.
The control section generates and manages the control bus, which
appears at the top of the illustration.

The three buses managed or generated by the system-the data bus, the
address bus, and the control bus-all propagate outside the micropro­
cessor through its pins. The external connections are shown on the right­
most part of the illustration. As shown in the figure, the buses are isolated
from the outside through buffers.

The 65816 is a 16-bit machine internally, but has an external 8-bit data
bus. The two bytes that form 16-bit data are sent out one at a time
through the data-bus buffer. The data bus also carries the bank address of
the 65816. Two registers-the program bank register (PBR) and the data
bank register (DBR), shown to the right of the D register in Figure 2.8-are
used to make the bank address. The bank-address byte is concatenated

44 PROGRAMMING THE 65816

with the 16-bit address bus to form a 24-bit address to memory. A bank of

memory is 64K, and with an 8-bit bank register, 256 banks or 16M of

memory are available. (One megabyte [M] is 1,048,576 bytes.) The DBR is

used to form the address of data, and the PBR is used to form the address

of an instruction. The two registers allow instructions in one bank of mem­

ory to use data in another bank of memory. The S and D registers only

address data in bank 0.
The special internal bus is used to transfer the contents of the index reg­

isters, accumulator, and ALU between each other and the address bus.

The internal data bus, address bus, and special bus can be connected by

the transfer switches.
I have now described all the logical elements of the 65816. Although

you need not understand the detailed operation of the 65816 to start writ­

ing programs, you must choose the correct registers and techniques to

write efficient codes. To make a correct choice, you need to understand

how instructions are executed within the microprocessor. Therefore, I will

now examine the execution of typical instructions inside the 65816 and

demonstrate the role and use of the internal registers and buses.

/ NSTRUCTION FORMATS OF THE 65816

Appendix D lists the 65816 instructions. (Note that an instruction specifies

the operation to be performed by the microprocessor.) The 65816 instruc­

tions may be formatted in one, two, three, or four bytes. From a more

simplified standpoint, every instruction may be represented as an opcode,

followed by an optional literal or address field, comprising one or two

bytes. The opcode field specifies the operation to be carried out. In strict

computer terminology, the opcode represents only those bits that specify

the operation to be performed, exclusive of the register pointers that

might be necessary. In the microprocessor world, it is convenient to call

the opcode the operation code itself, as well as any register pointers that it

might incorporate. This "generalized opcode" must reside in an 8-bit

byte, for reasons of efficiency. This 8-bit opcode is a limiting factor on the

number of instructions available in a microprocessor.

Most microprocessors use instructions that are one, two, or three bytes

long. (See Figure 2.9.) However, the 65816 can use addresses three bytes

long, so some instructions are four bytes long.
Many instructions require that one byte of data, or a part of an address,

follow the opcode. In such a case, the instruction will be a two-byte

instruction, the second byte being data or part of an address. In other

65816 HARDWARE ORGANIZATION 45

2WORD
INSTRN

7

I GENERALIZED OPCODE

OPTIONAL DATA OR ADDRESS

OPTIONAL DATA OR ADDRESS

Figure 2.9: Typical Instruction Formats

0

11 WORD
INSTRN

3WORD
INSTRN

cases, the instruction might require the specification of an address. An
address requires 16 or 24 bits and, therefore, two or three bytes. Thus,
the instruction will be a three- or four-byte instruction.

For each byte of the instruction, the control unit must perform a mem­
ory fetch, which requires one clock cycle. Thus, the shorter the instruc­
tion, the faster the execution.

ONE-BYTE INSTRUCTION (65816)
One-byte instructions require the smallest amount of memory and are,
therefore, favored by the programmer. A typical one-byte instruction for
the 65816 is an increment, for example:

INCA

which adds 1 to the contents of the A accumulator. This is a typical opera­
tion. Every microprocessor is equipped with an instruction like INC A,
which allows programmers quickly to add a one to a register, which may
then be used as a counter or pointer into memory. Instructions referenc­
ing different registers or memory will have different opcodes.

You must represent every instruction internally in a binary format. The
above representation, INC A, is mnemonic, or symbolic; it is the assembly­
language representation of an instruction. It is a convenient symbolic repre­
sentation of the actual binary encoding for that instruction. The binary code
that represents this instruction inside memory is 00011010 (bits 0 to 7).

The placement of the bits in the binary representation of an instruction
is not meant for the convenience of the programmer, but for the micro­
processor, which must decode and execute the instruction. The assembly

46 PROGRAMMING THE 65816

language representation, however, is meant for the convenience of the

programmer.
Another example of a one-byte instruction is:

DECA

This instruction subtracts one from the contents of A. You can verify in

Appendix D that the binary representation of this instruction is 00111010.

TWO-BYTE INSTRUCTION (65816)

The two-byte instruction

LOA #n

loads the contents of the second byte of the instruction to the accumula­

tor. The contents of the second byte of the instruction are said to be lit­

eral. They are data and are treated as eight bits without any particular

significance. They could be a character or numerical data-a fact that is

irrelevant to the operation.
The code for this instruction is:

10101001 followed by the 8-bit byte n

The symbol # is used to indicate an immediate operation. Immediate, in

most programming languages, means that the next byte or bytes within

the instruction contain a piece of data that should not be interpreted; that

is, the next one or two bytes are to be treated as literals.
The control unit is programmed to "know" how many bytes each

instruction has. It will, therefore, always fetch and execute the right num­

ber of bytes for each instruction. However, the longer the instruction, the

more complex it is for the control unit to decode.

THREE-BYTE INSTRUCTION (65816)

The instruction

ADC nn

requires three bytes. It adds to the accumulator from the address specified

in the next two bytes of the instruction. Since addresses are 16 bits long,

65816 HARDWARE ORGANIZATION 47

they require two bytes. In binary, this instruction is represented by:

01101101

Low Address

High Address

8 bits for the opcode

8 bits for the lower part of the address

8 bits for the higher part of the address

f XECUTION OF INSTRUCTIONS IN THE 65816

You have seen that all instructions are executed in three phases: fetch,
decode, and execute. The amount of time it takes to execute an instruc­
tion depends on the instruction and the type of memory access being
done. In the 65816, time is measured in clock cycles. It always takes an
integral number of clock cycles to execute an instruction.

Accessing memory requires one clock cycle. Since each instruction
must first be fetched from memory, even the fastest instruction requires
more than one clock cycle. The fetch phase of an instruction presents the
address of the next instruction to the memory. This address is contained in
the program counter. When the contents of memory are available, they
can be transferred within the microprocessor to the instruction register.
The PC is then incremented to point to the next byte in the program.

When the instruction is deposited in the instruction register of the
65816, it is decoded. It takes at least one clock cycle, and possibly more,
to decode and execute the instruction. Appendix E gives the execution
time for each instruction, describes the address bus cycle-by-cycle activity
for each instruction, and shows the external activities of the 65816 while
the instruction is being executed. This table offers an in-depth understand­
ing of instruction execution.

EXECUTION OF A ONE-BYTE INSTRUCTION (65816)
Recall that the one-byte instruction

INCA

adds 1 to the A accumulator. This instruction is fetched during the first
clock cycle and is decoded and executed during the second cycle. The

48 PROGRAMMING THE 65816

two-cycle execution time of a one-byte instruction illustrates that all

instructions require at least two clock cycles.

EXECUTION OF A TWO-BYTE INSTRUCTION (65816)

Recall that the instruction

LOA #n

described in the previous section, loads to the A accumulator the contents

of the byte that immediately follows the instruction. During the first clock

cycle, the instruction is loaded into the IR; and the PC increments. During

the second clock cycle the instruction is decoded, while the next byte, the

data, is fetched. The data from this second fetch is loaded into the accu­

mulator before the end of the second cycle. Observe that two activities

occurred during the second cycle: the instruction in the IR was decoded,

and the next byte was fetched. Since most instructions in the 65816 need

this second byte, execution is speeded considerably.

EXECUTION OF A THREE-BYTE INSTRUCTION (65816)

The instruction

ADC nn

is a three-byte instruction. Recall that it adds to the A accumulator the

contents of the memory location addressed by nn.

This instruction requires four cycles to execute. The first cycle fetches

the opcode. The next decodes the instruction and fetches the low address

byte. The third fetches the high address byte. The fourth forms the

address of the data on the internal address bus (see Figure 2.8) and uses

this address to fetch the data from memory and add it to the accumulator.

If the processor were in the 16-bit mode, a fifth cycle would be needed to

fetch the second byte and add it to the accumulator.

The detailed descriptions I have just presented on the execution of typi­

cal instructions should help to clarify the role of the registers and internal

buses. A second reading of the preceding section may be helpful in gain­

ing a detailed understanding of the internal operation of the 65816.

THE 65816 AND 65802 CHIPS

The 65816 processor was developed as a 16-bit version of the popular

6502 chip. By setting the E bit in the processor status register to 1, the

65816 HARDWARE ORGANIZATION 49

65816 will emulate all the instructions of the 6502. When the E bit is 1,
the 65816 is in the emulation mode. When the E bit is 0, the 65816 is in
the native mode and all the additional instructions and addressing modes
of the 65816 are available. (See Programming the 6502 by Rodnay Zaks
for more information on the 6502.)

For completeness, I will now examine the signals of the 65816 micro­
processor chip. You need not understand the functions of 65816 signals to
program the 65816. If you are not interested in the details of hardware,
you may want to skip this section.

The 65816 comes in two different forms: the W65C816 and the
W65C802. I will first describe the signals of the W65C816. Then I will
describe those signals on the W65C802 that are different from those on
the W65C816. The instructions for the two processors are identical; only
the hardware pinouts are different. Figure 2.10 displays the pinout of the
W65C816.

I will now describe the signals, going from the top of the figure to the
bottom.

The <I> input is the system clock. The frequency of this clock determines
the cycle time of the 65816.

Four W65C816 control signals are related to its internal status or se­
quencing. IRQ and NMI are the two interrupt signals. IRQ is the usual inter­
rupt signal. You may connect several input/output devices to the IRQ
interrupt line. Whenever an interrupt request is present on this line and the
internal interrupt bit is enabled, the 65816 will accept the interrupt. NMI is
the nonmaskable interrupt. It is always accepted by the 65816.

The ABORT input aborts instructions, usually when there is a problem on
the address bus. When the ABORT is active, the instruction will not modify
any internal registers and will cause an interrupt when the instruction istc::om­
plete. The address of the aborted instruction is stored on the stack, and the
interrupt will vector to OOFFE8,9 in the emulation mode and OOFFE8,9 in the
native mode. The ABORT signal is negative-edge triggered.

Reset (RES) is the signal that initializes the MPU. It moves the contents of
address OOFFFC and OOFFFD into the PC. The D, DBR, and PBR, and the
high bytes of the X and Y registers, are set to 0, and normal interrupts are
disabled. The processor is set to the emulation mode, and the M and X
bits in the processor status are set to 1. Reset is usually used after you turn
on the computer.

The six bus-control signals are used to control the memory and data
buses. The read/write (R/W) is an output that indicates whether data is
being read from or written to memory. The memory lock (ML) output
indicates a read/modify/write cycle. When a multiprocessor system is
used, the other processors should not access memory when the ML signal
is active. The vector pull (VP) output indicates that a vector is being

50 PROGRAMMING THE 65816

CLOCK <1>2 37

9 to 20 AO
• ADDRESS and • 3 22 to 25 • BUS

MPU IRQ (~ITT 4
A15

CONTROL -
NMI 6

RES 40

R/W 34

Ml 5

VP
PO/BAO DATA/

BUS •
CONTROL

33 to 26 • ADDRESS
VPA 7 • BUS

PO/BA7

VOA 39

BE 36

MPU { E 35

STATUS MIX 38

ROY 2 8 21

t
+sv GND

' v "
POWER

Figure 2.10: W65C816 MPU Pinout

addressed during an interrupt. The valid data address (VDA) and valid

program address (VPA) are used to indicate the type of memory being

accessed by the address bus. There are four possible combinations of

VDA and VPA. They are:

VOA VPA

0 0 Internal operation, the address and data buses are

available
0 1 Valid program address
1 0 Valid data address
1 1 Opcode fetch

65816 HARDWARE ORGANIZATION 51

VDA and VPA may be used when you have cache memories in a system.
The bus enable (BE) input is used to set the data bus, address bus, and
R/W line to the high impedance state to allow external control.

Two signals indicate internal processor status. The first is E, which shows
the state of the emulation bit. The second is memory/index (M/X) select
status. This multiplexed signal indicates the state of the M and X bits in the
processor status register.

The ready (RDY) signal is a bidirectional signal. When the output is
active, the ready indicates the processor has executed a wait instruction.
If the ready is pulled low externally, the processor will halt execution until
the ready signal goes high.

W65C802 CONTROL SIGNALS
The major difference between the W65C816 and W65C802 is that the
W65C802 is pin-to-pin compatible with the 6502. The W65C802 does not
have the extended bank-addressing registers multiplexed with the data
bus, so the W65C802 addresses 64K. The W65C802 is identical internally
to the W65C816, and programs are interchangeable as long as the
extended-memory feature of the W65C816 is not used. (For compatibility,
leave the DBR and PBR registers at 0.) Figure 2.11 displays the W65C802
pinout.

There are three clock signals on the W65C802. The first additional sig­
nal is <1>1 out, which provides an inverted clock output for external read
and write operations. The second new signal is <1>2 out, which is also used
for external read and write operations.

The synchronize (SYNC) output indicates when the processor is fetching
an opcode. The set overflow (SO) input sets the overflow bit (V) in the
processor status register. All the other pinouts are the same as on the
W65C816.

SUMMARY

In this chapter, I have described the internal organization of the 65816.
The role of each register is important, and you should fully understand
them before you proceed to the next chapter. Chapter 3 introduces the
instructions available on the 65816 and many basic programming tech­
niques for the 65816.

52 PROGRAMMING THE 65816

a={ Cl>2(1N) 37

Cl>l(OUT) 3 AO
9 to 20 • ADDRESS

Cl>2(0UT) 39 and • • BUS
22 to 25 AlS

IRQ 4

Mru { NMI 6
CONTROL

RES 40

BUS {
R/W 34

CONTROL SYNC 7
DO
• DATA

33 to 26 • BUS •
07

so___,. 38

ROY 2

5

NO { 35
CONNECTION

36
8 21 l

+SV GND
'"-------v ___ _.J

POWER

Figure 2.11: W65C802 MPU Pinout

EXERCISES

2-1: Write the binary code that will increment the index register X, /NX.

Consult Appendix D for the code. (Note: This table uses hexadecimal

notation.)

2-2: What is the binary code of the instruction that will clear the contents

of the carry bit C in the processor status register?

3
IN THIS CHAPTER, I examine the basic techniques necessary for writing a
program for the 65816. In particular, I show how to move information
between the memory and the MPU, and how to manipulate it within the
MPU itself. I develop programs of increasing complexity, so that you can
see how various instructions and registers interact.

I will begin by writing simple arithmetic programs. I will then go on to
explain the use of the 65816's excellent 16-bit arithmetic capabilities.
Finally, I will discuss the important multiply and divide operations.

A RITHME.TIC PROGRAMS

The arithmetic programs in this chapter show how to do addition, sub­
traction, multiplication, and division. Each uses at least one register. Figure
3.1 shows a conceptual diagram of the 65816 registers. These programs
perform integer arithmetic on positive binary numbers and on negative
numbers represented as two's complement integers. Let's begin with an
example of 8-bit addition.

8-8/T ADDITION
Here's a program that performs 8-bit addition:

(Instructions)

LOA
ADC
STA

ADR1
ADR2
ADR3

(Comments)

LOAD OP1 INTO A
ADD OP2 TO OP1
SAVE THE RESULT RES AT ADR3

In this program, I add two 8-bit operands, OPl and OP2, stored at mem­
ory addresses ADRl and ADR2, respectively. I call the sum RES and store
it at memory address ADR3 (as shown in Figure 3.2).

56 PROGRAMMING THE 65816

23 15

DATA BANK
DBR

DATA BANK
DBR

PROGRAM BANK
PBR

Figure 3.1: The 65816 Registers

X-INDEX REGISTER

Y-INDEX REGISTER

PC-PROGRAM COUNTER

D-DIRECT REGISTER

S--STACK POINTER

B I
c

A

p

PROCESSOR
STATUS

REGISTER

0

Each line of the program, expressed here in symbolic form, is called an
instruction. Each instruction is translated by the assembler program into
from one to four binary bytes. For this example, I will not discuss this
translation; instead I will examine the symbolic representation.

The first line of the program specifies: "load the contents of ADR1 into
accumulator A." Figure 3.2 shows that the contents of ADR1 is the first
operand, OP1. Thus, the first instruction transfers OP1 from the memory
into the accumulator (see Figure 3.3).

ADR1 is a symbolic representation of the actual 16-bit address in the
memory. It is defined as being equal to the address 100. The LDA instruc­
tion then results in a read operation from address 100 combined with the
data bank register, DBR (see Figure 3.3); that is, the contents of address
100 are transferred along the data bus and deposited into accumulator A.
Recall from Chapter 2 that arithmetic and logical operations operate
on the accumulator as one of the source operands. Since you want to add
the two values OP1 and OP2, you must first load OP1 into the accumula­
tor; you can then add OP2 to the contents of the accumulator.

BASIC PROGRAMMING TECHNIQUES 57

MEMORY

ADRl OPl (First operond)

ADR2 OP2 (Second operand)

ADR3 RES (Result)

ADDRESSES

Figure 3.2: 8-Bit Addition: RES = OP1 + OP2

Referring back to the program, let's now examine the rightmost field of
each instruction, called the comment field. Comments are ignored by the
assembler program at translation time; they are useful for program read­
ability. To understand what the program does, it is important to document
it with good comments. For the first line of the program, the comment is
'self-explanatory: the value of OPl, located at address ADRl, is loaded
into accumulator A. Figure 3.3 shows the result of this first instruction.

The second instruction

ADC ADR2

specifies: "add from ADR2 to accumulator A." Referring to Figure 3.2, you
see that the memory location, ADR2, contains the second operand, OP2.
When the second instruction is executed, OP2 is fetched from memory
and added to OPl (see Figure 3.4). The sum is then deposited in the accu­
mulator. (Note: Remember that in the case of the 65816, the results of
the arithmetic operation are deposited back into the accumulator. With
other processors, however, it may be possible to deposit these results
in other registers, or back into memory.)

The sum of OPl and OP2 is now contained in accumulator A. To com­
plete this program, you must transfer the contents of A into memory loca­
tion ADR3, in order to store the results at the specified location. This is
done by the third instruction:

STA ADR3

58 PROGRAMMING THE 65816

65816 MEMORY

DATA BUS

A 100

(ADRl)

ADDRESS BUS

Figure 3.3: LDA ADR1 :OP1 Is Loaded from Memory

65816 MEMORY

ADDRESS BUS

Figure 3.4: ADC ADR2

This instruction loads the contents of A into the specified address, ADR3.
Figure 3.5 shows the effect of this final instruction.

Before execution of the ADC operation, the accumulator A contained
OP1 (see Figure 3.4). After the addition, a new result was written into

BASIC PROGRAMMING TECHNIQUES 59

65816 MEMORY

~~~~~~~~~--=-~, 
I I 
I I 
I I 

(ADR3) 

ADDRESS BUS 

Figure 3.5: STA ADR3 

A: OP1 + OP2. Recall that the contents of any register within the micro­

processor, as well as any memory location, remain the same after a read 

operation has been performed on that register. In other words, reading 

the contents of a register or memory location does not change its con­

tents. Only a write operation in the register location changes the contents. 

In this program, the contents of ADR1 and ADR2 remain unchanged 

throughout the program. However, after the ADC instruction, the con­

tents of A are modified, because the output of the ALU is written into the 

accumulator. The previous contents of A are then lost. 

65816 PECULIARITIES 
The above three-instruction program would indeed be the complete pro­

gram for most microprocessors. However, two peculiarities of the 65816 

exist that will normally require two additional instructions. 
First, the ADC instruction really means "add with carry" rather than 

"add." The difference is that a regular add instruction adds two numbers, 
and add-with-carry adds two numbers plus the value of the carry bit. 

Since you are adding here 8-bit numbers, no carry should be used, and at 

the time you start the addition you do not necessarily know the condition 

of the carry bit (it may have been set by a previous instruction), so you 

must clear it (set it to zero). This is accomplished by the CLC instruction: 

"clear carry." 



60 PROGRAMMING THE 65816 

Unfortunately, the 65816 does not have both types of addition opera­

tions. It has only an ADC operation. As a result, for single 8-bit additions a 

necessary precaution is always to clear the carry bit. This is no significant 

disadvantage but should not be forgotten. 
The second peculiarity of the 65816 lies with the fact that it is equipped 

with powerful decimal instructions, which will be used in the next section 

on BCD arithmetic. The 65816 always operates in one of two modes: 

binary or decimal. The state it is in is conditioned by a status bit, the D bit 

(of register P). Since you are operating in binary mode in this example, 

you must make sure that the D bit is correctly set. This is done by a CLO 
instruction, which clears the D bit. Naturally, if all arithmetic within the 

system is done in binary, the D bit is cleared once and for all at the begin­
ning of the program, and you do not have to set it every time. Therefore, 

this instruction may, in fact, be omitted in most programs. However, when 

you practice these exercises on a computer, you may go back and forth 

between BCD and binary exercises. I have included this extra instruction 

here because it must appear at least once before you perform any binary 
addition. 

The complete, and safe, 8-bit program is now: 

CLC 
CLO 
LOA 
ADC 
STA 

ADR1 
ADR2 
ADR2 

CLEAR CARRY BIT 
CLEAR DECIMAL BIT 
LOAD OP1 IN A 
ADD OP2 TO OP1 
SAVE RES AT ADR3 

You may use actual numerical addresses instead of ADRl, ADR2, and 

ADR3. To keep symbolic addresses, you must use pseudo-instructions. 
Pseudo-instructions specify the value of the symbolic address, so that dur­

ing translation the assembly program may substitute the actual physical 
addresses. Examples of pseudo-instructions are: 

ADR1 
ADR2 
ADR3 

EQU 
EQU 
EQU 

$100 
$120 
$200 

In conclusion, an 8-bit addition allows only the addition of 8-bit 

numbers-numbers between 0 and 255-if absolute binary is used. For 

most practical applications, however, it is necessary to add numbers hav­

ing 16 bits or more-to use multiple precision. Therefore, let's now look at 

some examples of arithmetic on 16-bit numbers. 



BASIC PROGRAMMING TECHNIQUES 61 

16-BIT ADDITION 
For this example, assume the first operand is stored at memory locations 

ADR1 and ADR1 -1. Since OP1 is a 16-bit number this time, it requires 

two 8-bit memory locations. Similarly, OP2 is stored at ADR2 and 

ADR2 - 1. The result is to be deposited at memory addresses ADR3 

and ADR3 - t This process is illustrated in Figure 3.6. Note that H indi­

cates the high half (bits 8 to 15), and L indicates the low half (bits 0 to 7). 

The ·logic of this program is exactly the same as in the previous one. 

First, the lower half of the two operands is added. Any carry generated by 

this addition is stored automatically in the internal carry bit (C). Then, the 

high-order half of the two operands is added, along with any carry, and 

the result is saved in the memory. Here is the program: 

CLC 
CLO 
LOA 
ADC 
STA 
LOA 
ADC 
STA 

ADR1 
ADR2 
ADR3 
ADR1-1 
ADR2-1 
ADR3-1 

LOAD LOW HALF OF OP1 
ADD OP1 AND OP2 LOW 
STORE RESULT LOW 
LOAD HIGH HALF OF OP1 
(OP1 + OP2) HIGH + CARRY 
STORE RESULT HIGH 

The first two instructions are used to ensure that the processor is ready 

for the type of arithmetic you want to do. The next three instructions are 

identical to the ones used for the 8-bit addition in the previous section. 

They add the least significant half (bits 0 to 7) of OP1 and OP2. The sum, 
called RES, is stored at memory location ADR3 (see Figure 3.6). 

Automatically, whenever an addition is performed, any resulting carry 
(whether 0 or 1) is saved in the carry bit (C) of the processor status regis­

ter (register P). If the two 8-bit numbers generate a carry, then the C bit 

will be equal to 1. (It will be set.) If the two 8-bit numbers do not generate 

a carry, then the value of the carry bit will be 0. 
The next three instructions of the program are also identical to those in 

the previous 8-bit addition program. This time, however, they add the 

most significant half (the high half, bits 8 to 15) of OP1 and OP2, plus any 

carry, and store the result at the address ADR3 - 1. After this program has 

been executed, the 16-bit result is stored at memory locations ADR3 and 

ADR3-1. 
At this point, you might ask: "But what if the addition of the high half of 

the operands also results in a carry?" There are two ways to handle this 

situation. First, you can assume that this will not happen unless an error 
has been made, because the program is designed to work for results of 



62 PROGRAMMING THE 65816 

MEMORY 

ADRl-1 (OPl)H 

ADRl (OPl)L 

ADR2-1 (OP2)H 

ADR2 (OP2)L 

ADR3-1 (RES)H 

ADR3 (RES)L 

Figure 3.6: Operands for 16-Bit Addition 

only up to 16 bits, not 17. Second, you can assume that the program will 
halt when the carry is set. Or, you can include additional instructions that 
will handle the extra bit in another word of memory, thus making a 24-bit 
word. It is up to you to decide on the best route for your purpose-the 
first of many decisions. 

(Note: In writing this last program, I have assumed that the high part of the 
operand is stored "on top of' the lower part-at the lower memory address. 
This need not always be the case. In fact, the 65816 stores addresses in the 
reverse manner: the low part is stored in memory first and the high part is 
stored in the next memory location. To use a standard convention for both 
addresses and data, I recommend that you also keep data with the low part 
on top of the high part. This is illustrated in Figure 3.7.) 

When operating on multibyte operands, it is important to remember 
the following information: 

1. The order in which data is stored in memory 



BASIC PROGRAMMING TECHNIQUES 63 

MEMORY 
()()()() 

ADRl (OPl)L 

ADRl + 1 (OPl)H 

ADR2 (OP2)L 

ADR2+1 (OP2)H 

ADR3 (RES)L 

ADR3+1 (RES)H 

FFFF 

Figure 3.7: Storing 16-Bit Operands in the 65816 

2. The location where the data pointers are pointing-to the low or 
high byte 

Similarly, when designing algorithms or data structures, you must decide 
how to store the 16-bit numbers (low or high part first) and whether 
address references should point to the low or high half of these numbers. 

The programs I have presented so far have been traditional: they use an 

8-bit accumulator. I will now present an alternative program for 16-bit 

addition that does not use the simple 8-bit accumulator. Instead, it uses 
the 16-bit accumulator mode of the 65816. (Remember from Chapter 2 

that C is actually A and B, and that the 65816 allows accumulators A and 

B to be used as the 16-bit C accumulator.) Operands will be stored as in 
Figure 3.7. the program is: 

REP #$20 CLEAR M BIT IN P 
CLC 



64 PROGRAMMING THE 65816 

CLO 
LOA 

ADC 
STA 

ADR1 

ADR2 
ADR3 

LOAD ACCUMULATOR WITH 
OP1 

ADD OP2 TO OP1 (16 BITS) 
STORE RES INTO ADR3 

Notice how much shorter this program is, compared to the previous ver­
sion. The first instruction, reset P, sets the 65816 into the 16-bit accumula­
tor mode by setting the M bit to 0. 

You can readily extend 16-bit numbers to 24, 32, or more bits (always 
multiples of 8 bits). Let's try an interesting exercise. Use the 16-bit mode I 
just introduced to write an addition program for 32-bit operands, assum­
ing the operands are stored as shown in Figure 3.8. Here is the program: 

REP #$20 CLEAR M BIT IN P 
CLC 
CLO 
LOA ADR1 LOAD LOW HALF OF OP1 
ADC ADR2 ADD LOW HALF OF OP2 
STA ADR3 STORE LOW HALF RES 
LOA ADR1+2 LOAD HIGH HALF OF OP1 
ADC ADR2+2 ADD HIGH HALF OF OP2 
STA ADR3+2 STORE HIGH HALF OF RES 

Now that you have learned to perform a binary addition, let's proceed 
to subtraction. 

SUBTRACTING 16-BIT NUMBERS 
Performing an 8-bit or 16-bit subtraction is quite simple, so let's try a 16-bit 
subtraction. As usual, the two numbers, OPl and OP2, are stored at 
addresses ADRl and ADR2. The memory is assumed to be that of Figure 
3.7. To perform the subtraction, you use the subtract operation (SBC) 
instead of the add operation (ADC). The only other change, compared to 
the addition, is that you use an SEC instruction at the beginning of the pro­
gram instead of a CLC. SEC means "set carry to 1." This indicates a "no­
borrow" condition. The rest of the program is identical to the one for 
addition. The program is: 

REP #$20 
CLO 
SEC 
LOA ADR1 OP1 INTOA 
SBC ADR2 OP1-0P2 
STA ADR3 RES INTO ADR3 



BASIC PROGRAMMING TECHNIQUES 65 

MEMORY 
ADRl 

LOW 
OPl 
HIGH 

ADR2 LOW 
OP2 
HIGH 

ADR3 LOW 
RES 

HIGH 

Figure 3.8: A 32-Bit Addition 

This program is essentially like the one developed for 16-bit addition. 

Recall that in two's complement arithmetic, the final value of the carry 

indicates a borrow. If a borrow condition has occurred as a result of the 

subtraction, the carry bit of the processor status register will be zero, and 
it can be tested. 

The examples presented so far in this chapter are simple binary addi­
tions and subtractions. However, you may need to use another type of 

arithmetic, BCD arithmetic. 

BCD ARITHME.TIC 

8-BIT BCD ADDITION 
Chapter 1 discussed the concept of BCD arithmetic. Recall that it is essen­

tially used for business applications, where it is imperative to retain every 

significant digit in a result. 



66 PROGRAMMING THE 65816 

In the BCD notation, a 4-bit nibble is used to store one decimal digit (0 
to 9). As a result, every 8-bit byte may store two BCD digits. (This is called 
packed BCD). To see how BCD works, let's add two bytes, each contain­
ing two BCD digits (see Figure 3.9). 

So that you can identify any problems that might come up, try some 
numeric examples first. To add 01 and 02: 

01 is represented by: 
02 is represented by: 

The result is: 

00000001 
00000010 

00000011 

This result is the BCD representation for 03. (If you are not sure of the 
BCD equivalent, refer to the conversion table in Appendix C.) Everything 
worked simply in this case. Try another example: 

08 is represented by: 
03 is represented by: 

00001000 
00000011 

If you obtained 00001011 as your result, you have computed the binary 
sum of 8 and 3. You have, indeed, obtained 11 in binary. But unfortu­
nately, 1011 is an illegal code in BCD. The BCD representation of 11 is 
00010001. 

This difference stems from the fact that the BCD representation uses 
only the first ten combinations of 4 digits to encode the decimal symbols 0 
through 9. Thus, the remaining six possible combinations of 4 digits are 
unused in BCD notation, and the illegal 1011 is one such combination. In 
other words, whenever the sum of two BCD digits is greater than 9, you 
must add 6 to the result to skip over the six unused codes. 

Let's try another example. To add the binary representation of 6 to 1011: 

The result is: 

1011 
+ 0110 

00010001 

(illegal binary result) 
(+6) 

The result is, indeed, 11 in the BCD notation. You now have the correct 
answer. 

This example illustrates one of the basic difficulties of the BCD mode: 
you must compensate for the six missing codes. You must use a special 
decimal addition adjust instruction (DM) to adjust the result of the binary 
addition on many microprocessors. (Add 6 if the result is greater than 9.) 
In the case of the 65816, the ADC instruction does it automatically. This is 
a clear advantage of the 65816 when doing BCD arithmetic. 



BASIC PROGRAMMING TECHNIQUES 67 

MEMORY 

. 
I 

1 1 
I 

I 

J 
2 2 

I 

+) 

ADR 
(RESULT) (ADR) 

Figure 3.9: Storing BCD Digits 

I will use this same example to illustrate another difference. In this 

example, the carry is generated from the lower BCD digit (the rightmost 

digit) into the leftmost one. This internal carry must be taken into account 

and added to the second BCD digit. The addition instruction takes care of 

this automatically. 
Just as in the case of binary addition, you must use CLC and SEO to set the 

processor in the BCD mode. As an example, here is a program to add the 

BCD numbers 11 and 22: 

CLC 
SEO 
LOA 
ADC 
STA 

#$11 
#$22 
ADR 

CLEAR CARRY 
SET DECIMAL MODE 
LOAD LITERAL BCD 11 
ADD LITERAL BCD 22 
STORE RESULT 

In this program, I am using two new symbols: # and $. The # symbol 

means that a literal (or constant) follows. The $ sign within the operand field 

of the instruction specifies that the data that follows is expressed in hexadeci­

mal notation. The hexadecimal and the BCD representations for digits 0 

through 9 are identical. The last line of the program stores the result in 

address ADR. 



68 PROGRAMMING THE 65816 

BCD SUBTRACTION 
BCD subtraction appears to be complex. To perform a BCD subtraction, you 
must add the ten's complement of the number, just like you add the two's 
complement of a number to perform a binary subtract. You obtain the 
ten's complement by computing the nine's complement, then adding 1. This 
typically requires three to four operations on a standard microprocessor. 
However, the 65816 is equipped with a special BCD subtraction instruc­
tion, which performs this in a single instruction. As in the binary example, 
the program will be preceded by the instructions SED, which sets the dec­
imal mode, and SEC, which sets the carry to 1. Thus, the program to sub­
tract BCD 25 from BCD 26 is as follows: 

SEO 
SEC 
LOA 
SBC 
STA 

16-BIT BCD ADDITION 

#$26 
#$25 
ADR 

SET DECIMAL MODE 
SET CARRY 
LOAD BCD 26 
SUBTRACT BCD 25 
STORE RESULT 

You perform 16-bit addition just as simply as in the binary case. The pro­
gram for such an addition is: 

BCD FLAGS 

REQ 
CLC 
SEO 
LOA 
ADC 
STA 

#$20 

ADR1 
ADR2 
ADR3 

SET TO 16-BIT MODE 

In the BCD mode, the carry flag during an addition indicates that the 
result is larger than 99. This is unlike the two's complement situation, 
since BCD digits are represented in true binary. Conversely, the absence of 
the carry flag during a subtraction indicates a borrow. 

PACKED BCD ADDITION 
You have now learned how to perform elementary BCD addition and sub­
traction. However, in actual practice, BCD numbers include any number 



x 

BASIC PROGRAMMING TECHNIQUES 69 

of bytes. Let's look at a simplified example of a packed BCD addition. 

Assume that the two numbers, N1 and N2, include the same number of 

BCD bytes and that that number is called COUNT. Figure 3.10 shows the 

register and memory allocation. Here is the program: 

BCD PAK LOA #COUNT 
STA COUNTER 
LOX #0 CLEAR X REGISTER 
CLC CLEAR CARRY 
SEO SET DECIMAL MODE 

PLUS LOA N2,X LOAD N2 BYTE 
ADC N1,X ADD N1 BYTE 
STA N1,X STORE RESULT IN N1 
INX INCREMENTX 
DEC COUNTER COUNTER-1 
BNE PLUS LOOP UNTIL COUNTER=O 

N2 

1~~ 

Nl 

COUNTER 

Figure 3.10: Packed BCD Add: Nl +- N2 + Nl 



70 PROGRAMMING THE 65816 

N1 and N2 represent the addresses where the BCD numbers are stored. 
The value COUNT is put into the memory location counter, and the index 
register Xis cleared: 

BCDPAK LOA 
STA 
LOX 

#COUNT 
COUNTER 
#0 

In anticipation of the first addition, the carry bit must be cleared and the 
processor must be set in the decimal mode: 

CLC 
SEO 

The first byte of N2 is loaded into the accumulator, then the first byte of 
Nl is added to it. The result is then stored in Nl: 

PLUS LOA 
ADC 
STA 

N2,X 
N1,X 
N1,X 

The form N2,X indicates the use of absolute indexing. The address of the 
operand is formed by adding N2 to X. The index registers are incre­
mented, the counter is decremented, and the addition loop is executed 
until the counter reaches the value 0: 

INX 
DEC COUNTER 
BNE PLUS 

By using the index register, you can speed up and simplify the program. 
In this mode, the instruction uses the sum of the contents of the index 
register and the immediate operand to form the address of the data. See 
Chapter 5 for more information on addressing modes. 

INSTRUCTION TYPES 
You have now used two types of microprocessor instructions: LDA, which 
loads the accumulator from a memory address, and STA, which stores its 
contents at the specified address. These are data transfer instructions. You 
have also used arithmetic instructions, such as ADC and SBC, which per­
form addition and subtraction. Later in this chapter, I will introduce more 
ALU instructions. 

Other types of instructions are also available within the microprocessor. 
For example, there is the jump instruction. You can use this instruction to 



BASIC PROGRAMMING TECHNIQUES 71 

modify the order in which a program is executed. In fact, I use it later in 
an example showing multiplication. Note that jump instructions are often 
called branch instructions for conditional situations-that is, for situations 
where there is a logical choice in the program. The branch derives its 
name from the analogy to a tree, and it implies a fork in the representa­
tion of the program. 

M ULT/PLICATION 

Let's now examine a more complex arithmetic problem: the multiplication 
of binary numbers. Begin by examining a usual decimal multiplication. To 
multiply 12 by 23: 

12 
x23 

36 
+24 

= 276 

(multiplicand) 
(multiplier) 

(partial product) 

(final result) 

The multiplication is performed by first multiplying the rightmost digit 
of the multiplier by the multiplicand-3x 12 (the partial product is 36); 
and then by multiplying the next digit of the multiplier, 2, by 12. Then, 
add 24 to the partial product. 

There is, however, one more operation: 24 is offset to the left (or shifted 
left) by one position. (The number being added to 36 is really 240.) Equiv­
alently, you could say that the partial product (36) was shifted right by one 
position before adding. The two numbers, correctly shifted, are then 
added, and the sum is 276. That was easy. Look at an example of binary 
multiplication; it is performed in exactly the same way. To multiply 5 x 3: 

(5) 101 (multiplicand) 
(3) x011 (multiplier) 

--
101 (partial product) 

101 
+000 

(15) 01111 (final result) 

To perform the multiplication, operate exactly as you have done before. 
The formal representation of this algorithm appears in Figure 3.11 as a 
flowchart. Let's examine it. 



72 PROGRAMMING THE 65816 

SET 16-BIT MODE 

CLEAR ACCUMULATOR 

BIT COUNTER = 8 

MOVE LSB OF MPR TO C 

NO 

RES = RES + MPD 

SHIFT LEFT MPD 

NO 

SAVE RESULT 

DONE 

Figure 3./1: The Basic Multiplication Algorithm Flowchart 



BASIC PROGRAMMING TECHNIQUES 73 

This flowchart is a symbolic representation of the algorithm I have just pre­
sented. Each rectangle represents an order to be carried out and will be 
translated into one or more program instructions. Each diamond-shaped sym­
bol represents a test being performed-a branching point in the program. If 
the test succeeds, you branch to a specified location. If it does not, you 
branch to another location. I will explain the concept of branching later, in 
the program itself. You should now examine the flowchart and ascertain that 
it does, indeed, represent the algorithm presented. 

Note the arrow coming out of the last diamond at the bottom of the 
flowchart and going back to the fourth rectangle at the top. It represents 
the fact that this portion of the flowchart is executed eight times, once for 
each bit in the multiplier. This type of situation, where execution restarts 
at the same point, is called a program loop, for obvious reasons. 

8 x 8 MULTIPLICATION 
I will now translate the flowchart in Figure 3.11 into a program for the 
65816 and examine it in detail. Note that each box in the flowchart is 
translated into one or more instructions. (In this program, I assume that 
MPR and MPD already have a value.) 

MULT88 REP #$30 SET REGISTERS TO 16 BITS 
LOA #0 CLEAR ACCUMULATOR 
LOX #8 SET COUNTER TO 8 

MULT LSR MPRAD SHIFT MPR RIGHT 
BCC NOADD TEST CARRY BIT 
CLC PREPARE TO ADD 
ADC MPDAD ADD MPDTOA 

NOADD ASL MPDAD SHIFT MPDAD LEFT 
DEX DECREMENT COUNTER 
BNE MULT REPEAT UNTIL COUNTER= 0 
STA RESAD SAVE THE RESULT 

Figure 3.12 shows the registers and memory locations used by the program. 
The 65816 is set to the 16-bit mode because the result of an 8-bit multiply 

may be 16 bits. This is because 28 x 28 = 216. A 16-bit register must there­
fore be used for the result. The accumulator (A), the index register (X), and 
three memory locations are used for this multiplication program. The 8-bit 
multiplier (MPR) is assumed to reside at memory address MPRAD. The multi­
plicand (MPD) is assumed to reside at memory address MPDAD. The shift 
count (8) is loaded into X. The accumulator is set to zero. 



74 PROGRAMMING THE 65816 

.....-------. 0000 

x_I _ ___. A MPD MPDAD 

MPR MPRAD 

RESULT LOW RESAD 

RESULT HIGH 

..__ ____ _. FFFF 

Figure 3.12: Registers and Memory for 8 x 8 Multiplication 

The first step is to set the processor registers to the 16-bit mode, clear 

the accumulator, and load the shift counter, as shown in the flowchart in 

Figure 3.11. This is accomplished by the following instructions: 

MULT88 REP #$30 
LOA #0 
LOX #8 

The first instruction sets the accumulator and index registers to 16 bits. 

The next instruction clears the accumulator. The accumulator must be set 

to zero before the multiplicand is added. The third instruction loads the 

value 8 into the X index register. 
Referring back to the flowchart, the next step is to test if the least signifi­

cant bit (LSB) of the multiplier is one or zero. This is done by shifting the 



0 

BASIC PROGRAMMING TECHNIQUES 75 

multiplier right, so the LSB goes into the carry bit of the processor status 
register. The carry bit is then tested to see if an addition should be done. 
This is done in the next four instructions: 

MULT LSR 
BCC 
CLC 
ADC 

MP RAD 
NOADD 

MPDAD 

A new type of operation, shift, is introduced in the instruction LSR. It 
stands for logical shift right. This operation is performed in the arithmetic 
and logical unit. A shift right always puts 0 in bit 15 (or bit 7 in the 8-bit 
mode). There are different types of shift operations; I describe them in the 
next chapter. The effect of the shift is illustrated in Figure 3.13. 

15 0 

c 

Figure J.IJ: Shift-Right Multiplier 

The instruction BCC NOADD is a branch operation. It means "branch, 
if the carry bit is clear, to NOADD.'' If the result of a previous operation 
sets the carry bit to 0, the program branches to the address NOADD. If 
the carry bit is 1, no branch occurs, and the next sequential instruction is 
executed (that is, the instruction CLC is executed). 

The instruction CLC clears the carry bit in preparation for the addition 
done with the instruction ADC MPDAD. This addition uses the 16-bit form 
of the accumulator, and the word at the address MPDAD is 16 bits long. 

The next operation, according to the flowchart in Figure 3.11, is to shift 
the multiplicand (MPD) left one bit. The instruction 

NOADD ASL MPDAD 

does the shift, and because the processor is in the 16-bit mode, the whole 
16 bits is shifted at once. In an 8-bit microprocessor, extra instructions 
would be needed to shift. 

At this point, you must check to see if all eight bits have been shifted. 
You can do this by decrementing the bit counter in register X. The register 



76 PROGRAMMING THE 65816 

is decremented by the instruction: 

DEX 

This decrement instruction has the obvious effect. 

You must see if the counter has been decremented to the value 0. You 

can do this by checking the value of the Z bit. Recall that the Z (zero) sta­

tus flag indicates whether or not the previous arithmetic operation (such 

as a decrement operation) has produced a zero result. If the counter is 

not 0, the operation is not finished, and you must execute the program 

loop again. This is accomplished by the next instruction: 

BNE MULT 

This branch instruction specifies that whenever the Z bit is not set (NE 

means "not equal to zero"), a branch occurs to location MULT. This is the 

program, which is executed repeatedly until the counter is decremented 

to the value 0. Whenever the counter decrements to the value 0, the Z bit 

is set, and the BNE MULT instruction fails. This results in the execution of 

the next sequential instruction, namely: 

STA RESAD 

This instruction merely saves the 16-bit contents of A at the address 

RESAD, the address specified for the result. 

Note that in most cases, the program just developed is a subroutine, 

and the final instruction in the subroutine is RTS (return from subroutine). 

I explain the subroutine mechanism later in this chapter. 

IMPORTANT SELF-TEST 

This program is the first significant program I have presented so far. It 

includes many different types of instructions, including transfer instruc­

tions (LD, STI, arithmetic operations (ADC), logical operations (ASL, LSR), 

and branch operations (BCC, BNE). It also implements a program loop, in 

which the seven instructions starting at address MULT are executed 

repeatedly. It is longer and more complex than the other arithmetic pro­

grams, so study it carefully. 
To test your understanding of the program, try the following exercise, 

and complete it correctly before proceeding. It will be your only real 

proof that you have understood the concepts presented so far. If you 

obtain a correct result, then you have proven that you understand how 

instructions manipulate information in the microprocessor, transfer this 

information between the memory and registers, and process it. If you do 



BASIC PROGRAMMING TECHNIQUES 77 

not obtain the correct result, or if you do not do this exercise, it is likely 
that you will experience difficulties later when you begin writing programs 
yourself. Learning to program requires practice. Please pause now and do 
the following exercise. 

A Sample Exercise 
Every time you write a program, you should verify it by hand to ascertain 
that its results are correct. The goal of this exercise is to do just that by 
accurately completing Table 3.1. 

You may want to write directly on the table, or you may want to make a 
copy of it. For this exercise, you must determine the contents of every 
relevant register and memory location in the 65816 after the execution of 
each instruction in the program. Table 3.1 shows the registers and mem­
ory locations used by the previous program. From left to right, they are 
accumulator A, the index register X, the carry C, and the memory loca­
tions for the multiplier, multiplicand, and result. If applicable, you should 

Label Instruction A x c MPR MPD RESULT 

Table 3.1: Form for Multiplication Exercise 



78 PROGRAMMING THE 65816 

first complete the label on the left side of this table and then fill in the 

instructions being executed; then, on the right side of the table, you 

should fill in the contents of each register after each instruction has been 

executed. If you do not know the contents of a register, use dashes. 

Let's start by filling in the table together. After that, you must fill in the 

rest of the form by yourself. The first line appears in Table 3.2. Assume 

that you are multiplying 3 (MPR) by 5 (MPD). 

The first instruction to be executed is REP #$30. The M and X bits in the 

processor status register are cleared to put the accumulator and index 

registers in the 16-bit mode. Note that the contents of A, X, and the carry 

bit are still undefined (this is indicated by dashes). 

Table 3.3 shows the situation after the first three instructions have been 

executed (just before the MULT). 

The LSR instruction performs the logical shift right, and the rightmost bit 

of the multiplier falls into the carry bit. Table 3.4 shows that the contents 

Label Instruction A x c MPR MPD RESULT 

REP #$30 - - - 3 5 -

Table 3.2: Multiplication after One Instruction 



BASIC PROGRAMMING TECHNIQUES 79 

of MPRAD after the shift is 1. The carry bit C is now set to 1. The other 
registers are unchanged by this operation. Now that you see how the 
chart works, you should complete it. 

Table 3.5 shows a second iteration of the loop. 

PROGRAMMING ALTERNATIVES 
The preceding program could have been written in several different ways. 
As a general rule, even the programmer can usually find ways to modify, 
and often improve, a program. For example, I have used an algorithm 
that uses shifts and additions; however, I could have used a method that 
uses only repeated additions. The multiplier is decremented by 1 for each 
addition done, and the process stops when the multiplier reaches 0. This 
method is simpler than the first, because it is precisely the definition of 
multiplication, but it is slower. 

Label Instruction A x c MPR MPO RESULT 

REP #$30 - - - 3 5 -
LOA #0 0 - - 3 5 -
LOX #8 0 8 - 3 5 -

Table 3.3: Multiplication after Three Instructions 



80 PROGRAMMING THE 65816 

MULTIPLYING 16-BIT NUMBERS 
The 16 x 16 multiplication has a 32-bit product, so the product will 

require two words of memory. The multiplicand will also require an extra 

word of memory, because the leftmost bit of the multiplicand must be 

saved each time it is shifted left. The memory location called TEMP is used 

to save the bits of the multiplicand and is shown in Figure 3.14. Here is 

the program for 16 x 16 multiplication: 

MULT16 REP #$30 SET TO 16-BIT MODE 
LOA #0 CLEAR ACCUMULATOR 
STA TEMP CLEAR TEMP 
STA RE SAD CLEAR RESULT LOW 
STA RESAD+2 CLEAR RESULT HIGH 
LOX #16 COUNT TO 16 BITS 

MULT LSR MPRAD SHIFT MPR LSB TO C 

Label Instruction A x c MPR MPD RESULT 

REP #$30 - - - 3 5 -
LDA#O 0 - - 3 5 -

LOX #8 0 8 - 3 5 -

MULT LSR MPDAD 0 8 1 1 5 -

BCC NOADD 0 8 1 1 5 -

CLC 0 8 0 1 5 -

ADC MPDAD 5 8 0 1 5 -

NOADD ASL MPDAD 5 8 0 1 10 -

DEX 5 7 0 1 10 -

BNE MULT 5 7 0 1 10 -

Table 3.4: One Pass through the Loop 



BASIC PROGRAMMING TECHNIQUES 81 

NOADD 

BCC 
CLC 
LOA 
ADC 
STA 
LOA 
ADC 
STA 
ASL 
ROL 
DEX 
BNE 

NOADD 

RE SAD 
MPDAD 
RE SAD 
RESAD+2 
TEMP 
RESAD+2 
MPDAD 
TEMP 

MULT 

TEST CARRY C 
PREPARE TO ADD 
GET RESULT LOW 
ADD MPDTOA 
SAVE RESULT LOW 
LOAD HIGH RESULT 
ADD HIGH BITS OF MPD 
SAVE RESULT HIGH 
SHIFT MPD LEFT 
SHIFT C INTO TEMP 
DECREMENT BIT COUNTER 
REPEAT UNTIL COUNTER= 0 

When the multiplicand is shifted left, the carry bit must be transferred to 
the word TEMP. This transfer is done by the ROL instruction, which means 
"rotate left." In a rotation operation, as opposed to a shift operation, the 

Label Instruction A x c MPR MPO RESULT 

MULT REP #$30 - - - 3 5 -
LOA #0 0 - - 3 5 -
LOX #8 0 8 - 3 5 -
LSR MPRAD 0 8 1 1 5 -

BCC NOADD 0 8 1 1 5 -
CLC 0 8 0 1 5 -

ADC MPOAD 5 8 0 1 5 -
NOADD ASC MPOAD 5 8 0 1 10 -

DEX 5 7 0 1 10 -
BNE MULT 5 7 0 1 10 -
LSR MPRAA 5 7 1 0 10 -

BCC NOADD 5 7 1 0 10 -
CLC 5 7 0 0 10 -
ADC MPDAD 15 7 0 0 10 -

NOA DD ASL MPDAD 15 7 0 0 20 -
DEX 15 6 0 0 20 -
BNE MULT 15 6 0 0 20 -

Table J.S: Second Pass through the Loop 



82 PROGRAMMING THE 65816 

x I 

bit coming into the word holds the contents of the carry bit C (see Figure 

3.15). This is exactly what you want; the contents of Care loaded into the 

rightmost part of TEMP, and you have thereby transferred the leftmost bit 

of MPD. 

B /NARY DIVISION 

Division is another complex problem because there is no divide instruc­

tion in the 65816. To develop an algorithm for writing a division program 

for the 65816, let's start by examining a simple decimal division. To divide 

0000 

I Al I MPRAD MPR ~GJ 

TEMP 0 c MPD 
MPDAD 

RES AD RES LOW 

RESAD+2 RES HI 

FFFF 

Figure 3.14: Registers for 16 x 16 Multiplication 



254 by 12: 

(divisor) 

21 
12l2s4 

24 
14 
12 

BASIC PROGRAMMING TECHNIQUES 83 

(quotient) 

(dividend) 

2 (remainder) 

You perform the division by subtracting the largest possible multiple of 
the divisor from the leftmost digits of the dividend. The new dividend is 
14. The multiplier of the divisor becomes the second digit of the quotient. 
The remainder is the result of the last subtraction. 

You make trial subtractions or comparisons to find the largest multiple 
of the divisor that can be subtracted from the dividend. Note that in deter­
mining the first digit of the quotient, the actual number is 20, not 2, and 
the number subtracted from the dividend is 240, not 24. Leaving the zeros 

SHIFT LEFT 

0 

CARRY 

ROTATE LEFT 

Figure J. IS: Shift and Rotate 



84 PROGRAMMING THE 65816 

out makes the notation convenient, but you must not lose sight of what is 

actually being done. 
Binary division is performed in exactly the same way as decimal divi­

sion. Let's look at an example. To divide 10 by 3: 

0011 (quotient) 

(divisor) 11\ 1010 (dividend) 

11 
-
100 

11 
-

1 (remainder) 

To perform the division, operate exactly as you have done before. The 

formal representation of this algorithm appears in Figure 3.16. A 16 x 16 

division is done, and the register and memory layout is shown, in Figure 

3.17. Here is the program: 

DIV16 REP #$30 SET TO 16-BIT MODE 
LOX #16 LOAD BIT COUNTER 
LOA #0 CLEAR ACCUMULATOR 
STA QUOTAD CLEAR QUOTIENT 

DIVD ASL QUOTAD SHIFT QUOTIENT LEFT 
ASL DVD AD SHIFT DIVIDEND LEFT 
ROL A SHIFT DIVIDEND INTO A 
CMP DVSAD COMPARE A WITH DIVISOR 

BCC NOSUB IF A<DVS SKIP SUBTRACT 

SBC DVSAD SUBTRACT DVS FROM A 
INC QUOTAD ADD ONE TO QUOTIENT 

NOSUB DEX DECREMENT COUNTER 

BNE DIVD LOOP UNTIL 16 BITS DONE 

STA RE MAD STORE REMAINDER IN A 

This program introduces a new instruction, CMP, which is a compare 

operation. It means "compare the contents of the accumulator to the 

contents of DVSAD." This instruction subtracts the contents of DVSAD 

from A. It is actually subtracting the divisor from the dividend being 

shifted into A. It is not, however, a normal subtraction, because the con­

tents of A are not changed. Only the status register bits are affected. For 

example, if A equals DVS, the Z bit in the status register is set. The com­

pare operation does an internal subtraction of two operands, a memory 

location is subtracted from the accumulator, and the status register is set 



BASIC PROGRAMMING TECHNIQUES 85 

NO 

INITIALIZE 
QUOTIENT= 0 
COUNTER= 16 

SHIFT LEFT DIVIDEND 
INTOA 

AND QUOTIENT 

SUBTRACT 
A - DIVISOR 

QUOTIENT = QUOTIENT + 1 

COUNTER = COUNTER - 1 

YES 

END 

(REMAINDER IN REMAD) 

Figure 3.16: 16-Bit Binary Division Flowchart 

YES 



86 PROGRAMMING THE 65816 

according to the result of the subtraction. The operands are not changed. 
The status flags are now ready for use by a branch instruction. 

The division programs presented thus far have two possible flaws. One 
is that there is no check for division by zero: division by zero is unde­
fined, and therefore, it is an error condition. The program should check 
the divisor at the beginning. If the divisor is zero, you should branch to a 
code that handles the error. The other problem is that all the numbers 
have been assumed to be unsigned numbers. This problem is usually rec­
tified by determining the sign of the result from the signs of the dividend 
and divisor before the division is done. Then, convert the dividend and 
divisor to positive numbers and execute the division program. You then 
adjust the sign of the result to the sign determined before you performed 
the division. 

0000 

x ..... I __ _ A DVD DVD AD 

c 

DVS DVSAD 

QUOTIENT QUOTAD 

REM REMAD 

FFFF 

Figure 3.11: Registers for 16 x 16 Division 



BASIC PROGRAMMING TECHNIQUES 87 

LOGICAL OPERATIONS 

The other class of instructions, which can be executed by the ALU inside 
the microprocessor, is the set of logical instructions. These include AND, 
OR, and exclusive-OR (EOR). In addition, you can also include the shift 
and rotate operations, which have already been used, and the compari­
son instruction (CMP). I describe the AND, OR, and EOR instructions in 
Chapter 4. 

I will now develop a brief program that checks whether a memory loca­
tion called LOC contains the value 0, the value 1, or something else. This 
program uses the comparison instruction and performs a series of logical 
tests. Depending on the result of the comparison, some segment will then 
be executed. 

Let's look at the program: 

NONEFOUND 

ZERO 

ONE 

LOA 
CMP 
BEQ 
CMP 
BEQ 

LOC 
#$00 
ZERO 
#$01 
ONE 

READ CHARACTER IN LOC 
COMPARE TO ZERO 
IS IT A ZERO? 
COMPARE TO ONE 
IS IT A ONE? 

The first instruction, LDA LOC, reads the contents of memory location 
LOC and loads it into accumulator A. The data in LOC is the character 
you want to test. The instruction 

CMP #$00 

compares the contents of A to the hexadecimal value 00 (the bit pattern 
00000000). If this comparison instruction is successful, the Z bit in the sta­
tus register is set to the value 1. This bit is then tested by the next branch 
instruction: 

BEQ ZERO 

If this comparison is successful-if the Z bit has been set to one-then 
the branch succeeds. The program then jumps to the address ZERO. If the 



88 PROGRAMMING THE 65816 

test fails, the next sequential instructions are executed: 

CMP #$01 
BEQ ONE 

Similarly, the next branch instruction branches to location ONE, if the 

comparison succeeds. If none of the comparisons succeed, then the 

instruction at location NONEFOUND is executed: 

NONEFOUND ... 

This program demonstrates the value of the comparison instruction 

followed by a branch-a combination used in many of the following 

programs. 

/ NSTRUCTION SUMMARY 

I have now introduced you to most of the important instructions of the 

65816. You have learned how to transfer values between the memory and 

registers, perform arithmetic and logical operations on data, and use the 

loop. I have shown you how to test data, and depending on the results of 

these tests, execute various portions of the program. In particular, these 

operations have made full use of the special 65816 features, such as the 

16-bit accumulator and the 16-bit memory modes. I will introduce other 

special instructions throughout the remainder of this book. 

I will now discuss another important programming structure, the 

subroutine. 

SUBROUTINES 

In concept, a subroutine is simply a block of instructions named by the 

programmer. From a more practical point of view, a subroutine must start 

with a label, which identifies it to the assembler. It is terminated by a spe­

cial instruction called a return. I will now illustrate the use of a subroutine 

to demonstrate its value. Then, I will show how it is actually implemented. 

Figure 3.18 illustrates how a subroutine is used. The main program 

appears on the left of the illustration and the subroutine appears, symboli­

cally, on the right. Let's examine how the subroutine works. In this pro­

gram, the lines of the main program are executed successively until a new 



BASIC PROGRAMMING TECHNIQUES 89 

instruction, CALL SUB, is met. This special instruction is the subroutine 
call and results in a transfer to the subroutine. Thus, the next instruction to 
be executed after the CALL SUB is the first instruction in the subroutine. 
This is illustrated by arrow 1 in the illustration. 

The subprogram within the subroutine executes the same way as any 
other program, as indicated by arrow 2 in the figure. (I am assuming the 
subroutine does not contain any other calls.) The last instruction of this 
subroutine is a RETURN. This is a special instruction, which causes a 
return to the main program. The next instruction to be executed after the 
RETURN is the one following the CALL SUB in the main program. This is 
illustrated by arrow 3 in the illustration. Program execution then con­
tinues, as illustrated by arrow 4. 

Later, a second CALL SUB appears in the body of the main program. A 
new transfer occurs, as shown by arrow 5. This means that the body of 
the subroutine is again executed following the CALL SUB instruction. 

MAIN PROGRAM 

j 
CALL SUB 

CALL SUB 

8 

,....,...., 
,...... ...... I I 

......... 6 I 21 

I I 

Figure 3.18: Subroutine Calls:Execution Sequence 

SUBROUTINE 

RETURN 



90 PROGRAMMING THE 65816 

Whenever a RETURN is encountered within a subroutine, a return 

occurs to the instruction that follows the CALL SUB being executed. This 

is illustrated by arrow 7. Following the return to the main program, pro­

gram execution proceeds normally, as illustrated by arrow 8. 

The effect of the two special instructions, CALL SUB and RETURN, 

should now be clear. The essential value of the subroutine is that you can 

call it from any number of points in the main program, and use it repeat­

edly, without having to rewrite it. An advantage of this approach is that it 

saves memory space, since the subroutine doesn't need to be rewritten 

each time. Another advantage is that the programmer need design a spe­

cific subroutine only once, and can then use it repeatedly. This is a signifi­

cant simplification in program design. 
The disadvantage of a subroutine should become clear just by examin­

ing the flow of execution between the main program and the subroutine. 

A subroutine results in slower execution, since extra instructions must be 

executed (the CALL SUB and the RETURN). 

IMPLEMENTATION OF THE SUBROUTINE MECHANISM 

Let's now examine how the two special instructions, CALL SUB and 

RETURN, are implemented internally within the processor. The CALL SUB 

instruction causes the next instruction to be fetched at a new address. 

Recall that this address is contained in the program counter (PC). This 

means that CALL SUB substitutes new contents into register PC. In other 

words, the start address of the subroutine is loaded into the program 

counter. Is that really sufficient? 

To answer this question, let's consider the other special instruction: 

RETURN. This instruction causes a return to the instruction that follows 

the CALL SUB. This is possible only if the address of this instruction (that 

is, the value of the program counter at the time the CALL SUB was exe­

cuted) has been preserved somewhere. 
The next problem involves saving this return address: it must always be 

saved in a location where it will not be erased. 
Let's now, however, consider the situation illustrated in Figure 3.19, 

where subroutine 1 (SUB 1) contains a call to SUB2. That mechanism 

must work in this case, as well as in other cases, where there may be 

more than two subroutines-say n nested calls. Whenever the program 

encounters a new CALL, the mechanism that stores the return address 

must again store the program counter. Therefore, you need at least 2n 

memory locations for this mechanism. Additionally, you need to return 

from SUB2 first, and SUB1 next. In other words, you need a structure that 



BASIC PROGRAMMING TECHNIQUES 91 

can preserve the chronological order in which addresses were saved. This 
structure is the stack. 

Figure 3.20 shows the actual contents of the stack during successive 
subroutine calls. The memory layout of the program appears in Figure 
3.21. Let's examine the main program first. The first call, CALL SU Bl, is 
encountered at address 100. I assume that, in this microprocessor, the 
subroutine call uses three bytes. The next sequential address is, therefore, 
not 101, but 103. The CALL instruction uses addresses 100, 101, 102. 
Because the control unit of the 65816 "knows" the instruction is three 
bytes long, the value of the program counter, when the call has been 
completely decoded, is 103. Therefore, 103 is stored on the stack. The 
effect of the call is to load the value 280 in the program counter (280 is 
the starting address of SUBl). In SUBl, the subroutine SUB2 (at location 
900) is called at time 2 from the memory address 300. This pushes 303, 
the return address to SUBl, onto the stack. 

I am now ready to demonstrate the effect of the RETURN instruction 
and the correct operation of the stack mechanism. Execution proceeds 
within SUB2 until the RETURN instruction is encountered at time 3. The 
RETURN instruction simply pulls the top of the stack into the program 
counter. In other words, the program counter is restored to the value it 
had before entering the subroutine. In the example, the top of the stack is 
303. Figure 3.20 shows that, at time 3, value 303 is removed from the 

MAIN 

l SUBl SUB2 

CALL SUBl CALL SUB2 

RETURN RETURN 

Figure J. 19: Nested Calls 



92 PROGRAMMING THE 65816 

stack and put back into the program counter. As a result, instruction exe­
cution proceeds from address 303. At time 4, the RETURN of SUB1 is 
encountered. The value on top of the stack is 103. It is pulled and installed 
in the program counter. As a result, program execution proceeds from 
location 103 in the main program. That is, indeed, the effect you want. 
Figure 3.20 shows that at time 4 the stack is again empty. Thus, the mech­
anism to store return addresses works. 

The subroutine call mechanism works up to the maximum dimension of 
the stack. That is why early microprocessors with 4- or 8-register stacks 
were essentially limited to 4 or 8 levels of subroutine calls. 

STACK TIME CD TIME@ TIME@ TIME 0 I 
103 103 J03 

303 

Figure 3.20: Stack versus Time 

ADDRESS (MAIN) 

JOO CALL SUBJ 

J03 

300 

303 

© 

(SUBJ) 

(SUB2) 
® 900r------.... 

CALL SUB2 

RETURN 

RETURN 

Figure 3.21: The Subroutine Calls, Showing Memory Layout 



BASIC PROGRAMMING TECHNIQUES 93 

Note that for clarity, Figures 3.18 and 3.19 show the subroutines to the 
right of the main program. In reality, the subroutines are typed as regular 
instructions of the program. When you produce the listing of a complete 
program, you can list the subroutines at the beginning, middle, or end of 
the text. For this reason, you must identify them; you do so by preceding 

each subroutine by a label. 

65816 SUBROUTINES 
I have now discussed the basic concepts of subroutines. You have seen 
that a stack is required to implement this mechanism. The 65816 is 
equipped with a 16-bit stack-pointer register: the hardware stack S. The 
subroutine call of the 65816 always uses the hardware stack. This stack 
can reside anywhere within memory and may have up to 64K (1 K = 

1024) bytes, assuming they are available for that purpose. In practice, the 
programmer defines the start address for the stack, as well as its maximum 
dimension, before writing the program, so that some memory area is then 
reserved for the stack. 

In the case of the 65816, there are two subroutine call instructions: JSR 
and JSL. JSR (jump to subroutine), like the call previously described, con­
tains the address of the subroutine to jump to in the three-byte instruction. 
However, JSL (jump to subroutine long) differs from JSR in the way the 
address of the beginning of the subroutine is obtained. In the case of JSL, 
the three bytes following the opcode form the address of the subroutine. 
This 24-bit address allows a subroutine to be located anywhere in the 
65816 address space. 

There are two return instructions that mean "return from subroutine": 
RTS and RTL. These return instructions operate as previously described. 
Additionally, there is a special type of return instruction available that is 
used to terminate interrupt routines. This instruction, RTI, is described in 
the sections on the 65816 instructions and interrupts in Chapter 6. 

SUBROUTINE EXAMPLES 
Most of the programs developed in this book would normally be written 
as subroutines. For example, the division program is likely to be used by 
many areas of the program. To facilitate and clarify program development, 
therefore, it is convenient to define a subroutine with a name (for 

example, DIV16). At the end of this subroutine, then, you would simply 

add the instruction RTS. 



94 PROGRAMMING THE 65816 

RECURSION 
Recursion indicates that a subroutine is calling itself. Recursive programs 
are not encountered often. Their main application is in artifical­
intelligence programming. I will not discuss recursion further in this book. 

SUBROUTINE PARAMETERS 
When you call a subroutine, you normally expect that the subroutine will 
work on some data. For example, in the case of multiplication, you have 
to transmit two numbers, or parameters, to the subroutine that performs 
the multiplication. For example, the multiplication subroutine expects to 
find the multiplier and the multiplicand in given memory locations. Using 
fixed memory locations illustrates one of these three methods of passing 
parameters: 

1. Through registers 

2. Through memory 

3. Through the stack 

Let's now examine each method. 

Passing Parameters 
Registers are often used to pass parameters. This solution is the most 
advantageous if registers are available, since a fixed memory location is 
not needed; therefore, the subroutine remains memory-independent. 

Using memory to pass parameters offers greater flexibility, but results in 
poorer performance. It also ties the subroutine to a given memory area. 
The disadvantage of a fixed memory location is that when you use it, 
other users of the subroutine must be careful to use the same convention. 
Also, other users must make sure that the memory location is indeed 
available. That is why, in many cases, a block of memory locations is 
reserved simply for passing parameters among various subroutines. 

Depositing parameters in the stack offers the same advantage as using 
registers: it is memory-independent. The subroutine simply knows that it is 
supposed to receive, say, two parameters that are stored on top of the 
stack. Naturally, this method also has disadvantages. It clutters the stack 
with data and, therefore, reduces the number of possible levels of subrou­
tine calls. It also significantly complicates the use of the stack, and it may 
require multiple stacks. 



BASIC PROGRAMMING TECHNIQUES 95 

The choice is up to the programmer. Generally, it is advantageous to 

remain independent from actual memory locations as much as possible. 

If registers are not available, a possible solution is the stack. However, if 

a large quantity of information must be passed to a subroutine, this infor­

mation may have to reside directly in the memory. An elegant way around 

the problem of passing a block of data is simply to transmit a pointer to 

the information. Recall that a pointer is the address of the beginning of the 

block. A pointer can be transmitted in a register, in the stack (two-stack 

locations can be used to store a 16-bit address), or in one or more given 

memory locations. 
Finally, if neither of the two solutions is applicable, then you can make 

an agreement with the subroutine to put the data at some fixed memory 

location (the "mailbox"). 

SUBROUTINE LIBRARY 
There are definite advantages to structuring portions of a program into 

identifiable subroutines. For example, subroutines can be debugged inde­

pendently, and they can have a mnemonic name. Also, provided that they 

can be used in other areas of the program, they become shareable. It 

becomes advantageous to build a library of useful subroutines. However, 

there is no general panacea in computer programming. Using subroutines 

systematically for any group of instructions that can be grouped by func­

tion can result in poor efficiency. The alert programmer will have to weigh 

the advantages against the disadvantages. 

SUMMARY 

In this chapter, I have described how information is manipulated by 

instructions inside the 65816. I have introduced increasingly complex 

algorithms and translated them into programs. I have also discussed the 

main types of instructions and important structures such as loops, stacks, 

and subroutines. 
By now, you should have acquired a basic understanding of program­

ming and the major techniques used in standard applications. Let's go on 

to the next chapter and study the instructions available. 



96 PROGRAMMING THE 65816 

EXERCISES 

3-1: Referring only to the list of instructions in Appendix D, write a pro­
gram that adds two numbers stored at memory locations LOCJ and LOC2, 
and deposits the results at memory location LOC3. 

3-2: Rewrite the addition program in Exercise 3-1, using 16-bit numbers 
and the memory layout indicated in Figure 3.6. 

3-3: Refer to Figure 3.6. Assume now that ADR1 does not point to the 
lower half of OP1, but instead points to the higher part of OP1, as illus­
trated in Figure 3.7. Now write the corresponding program. 

3-4: Write an 8-bit subtraction program. 

3-5: Rewrite the subtraction program you wrote in Exercise 3-4, for 16-bit 
numbers, without using the specialized 16-bit instruction. 

3-6: Write a subtraction program for a 16-bit BCD number. 

3-7: Divide 28 by 4 in binar-r; using a flowchart, and verify that the result is 
7. If the result is not 7, try again. Only when you obtain the correct result 
are you ready to translate this flowchart into a program. 

3-8: Is it really necessary to clear the quotient at the beginning of a 16-bit 
division program? 

3-9: Compute the speed of a division operation using the 16-bit division 
program. Assume that a branch will occur in 50 percent of the cases. Look 
up the number of cycles required by each instruction in Appendix E. 
Assume a clock rate of 2 MHz (one cycle = 0.5 microseconds). 

3-10: Write a 16 x 16 division program, using the algorithm that subtracts 
the divisor from the dividend until the divisor is larger than the dividend. 
The quotient is incremented each time a subtraction is done. Compare it to 
the 16-bit division program in this chapter, and determine whether this 
approach is faster or slower than the preceding one. The speeds of the 
65816 instructions are given in Appendix D. 

3-11: Add a check for divide by zero to the 16 x 16 division program. 



BASIC PROGRAMMING TECHNIQUES 97 

3-12: Make the 16 x 16 division program so that it can handle signed 

numbers. 

3-13: Refer to the definition of the LOA LOC instruction in the next chap­

ter. Examine the effect, if any, of this instruction on the status flags. Is it nec­

essary to have the second instruction of the program (CMP $00) illustrate 

logical operations? 

3-14: Write a program that reads the contents of memory location 24 and 

branches to an address called STAR, if there is a* in memory location 24. 

The bit pattern for a* in binary notation is assumed to be represented by 

00101010. 

3-15: If DIV16 is used as a subroutine, will it "damage" any internal flags or 

registers? 

3-16: Is it legal to let a subroutine call itself? (In other words, will every­

thing work even if a subroutine calls itself?) If you are not sure, draw the 

stack and fill it with the successive addresses. Then, look at the registers and 

memory and determine if a problem exists. 





4 

IN THIS CHAPTER, I will first analyze the various classes of instructions 

normally available on a general-purpose computer. I will then examine 

the variety of instructions that the 65816 offers in each of these categories, 

and you will see how each of these instructions affects the status register. 

You will also see these instructions used in various addressing modes. 

CLASSES OF INSTRUCTIONS 

It is possible to classify instructions in several different ways; there is no 

standard set of classifications. For the purpose of this discussion, I will dis­

tinguish five main categories of instructions: 

1. Data transfers 

2. Data processing 

3. Test and branch 

4. Input/output 

5. Control 

DATA TRANSFERS 
Data transfer instructions transfer data between registers, between a regis­

ter and memor~ or between a register and an input/output device. Some 

registers even offer specialized transfer instructions that can be used to 

organize data (for example, push and pull operations are provided for effi­

cient stack operation). 



I 00 PROGRAMMING THE 65816 

DATA PROCESSING 
Data processing instructions modify data in the computer. These instruc­
tions fall into four general categories: 

1. Arithmetic operations (for example: plus, minus) 

2. Bit manipulation (for example: set, reset) 

3. Logical operations (for example: AND, OR, exclusive-OR) 

4. Skew and shift operations (for example: shift, rotate) 

TEST AND BRANCH 
Test instructions test the bits in the processor status register for values of 0 
or 1, and for combinations of these values. It is therefore desirable to have 
as many flags as possible in this register. 

It is useful to have instructions that will test for: 

1. Combinations of bits 

2. A single bit position in a word 

3. The value of a register compared to the value of a memory location 
(greater than, less than, or equal to) 

Generally, microprocessor instructions are limited to testing single bits of 
the flags register. 

Branch instructions generally fall into three categories: 

1. The branch, which is restricted to an 8-bit displacement field 

2. The jump, which specifies a full 16-bit address 

3. The call, which is used with subroutines 

It is convenient to have two- or even three-way branches, depending, for 
example, on whether one operand of a comparison is equal to, greater 
than, or less than the other operand. It is also convenient to have skip 
operations, which jump forward or backward by a few instructions. Note 
that a skip is equivalent to a branch. 



THE 65816 INSTRUCTION SET I 0 I 

INPUT /OUTPUT 

Input/output instructions are specialized instructions for handling input/ 
output devices. In practice, most microprocessors use memory-mapped 
110, whereby the input/output devices are connected to the address bus 
in the same way that the memory chips are connected, and they are 
addressed as such. (That is, they appear to the programmer as memory 
locations.) 

Memory-type operations (to the address of an 1/0 device) normally 
require three bytes and are, therefore, slow. For efficient input/output 
handling in such an environment, it is usually desirable to have a short 
addressing mechanism. It is possible to use direct page addressing, which 
requires only two bytes, if the 1/0 device addresses are all on the same 
page of memory. 

CONTROL 

Control instructions supply synchronization signals. These instructions can 
suspend or interrupt a program. They can also function as breaks or simu­
lated interrupts. (See Chapter 6 for a detailed description of interrupts.) 

THE 65816 INSTRUCTION SET 

The 65816 microprocessor was designed as an improved version of the 
6502 and, therefore, offers all the capabilities of the 6502, plus several 
new instructions. In view of the limited number of bits available in an 8-bit 
opcode, you might wonder how the designers of the 65816 succeeded in 
implementing additional instructions. They did so by using 255 of the 256 
possible opcodes and by not implementing certain address modes with 
some instructions. By keeping the opcode to one byte, the maximum 
instruction length is four bytes, and many instructions are only one or two 
bytes long. 

In this section, I will review the various instructions of the 65816, 
explore capabilities, and group them into logical categories. Let's first 
examine the capabilities provided by the 65816 in terms of the five classes 
of instructions just described. Later, I will present an individual, in-depth 
description of each instruction. 



I 02 PROGRAMMING THE 65816 

DATA TRANSFER INSTRUCTIONS ON THE 65816 
The data transfer instructions on the 65816 fall into three categories: 8-bit 

transfers, 16-bit transfers, and stack operations. Let's examine each category. 

8-Bit Data Transfers 
Most 8-bit data transfers use load and store instructions to transfer 8-bit 

data between memory, the accumulator, and the index registers. For 

example, the instruction 

LOA ADDR1 

loads accumulator A from memory. Similarly, 

STX ADDR1 

stores index register X in memory. To transfer data between registers, you 

use the transfer and exchange instructions. The transfer copies the con­

tents of one register to another. For example, the instruction 

TAX 

transfers the contents of A to the X register. The exchange instruction 

works only between the A and B accumulators when the M bit in the pro­

cessor status register is 1 (8-bit accumulator mode). For example, 

XBA 

copies the contents of B to A and A to B. 
There are several different addressing modes-immediate, absolute, 

direct, indirect indexed, indexed indirect, indexed, direct indirect, and 

stack-that you can use to access the memory location used in a load or 

store instruction. I discuss them in detail in Chapter 5. 

16-Bit Data Transfers 
You can use the same instructions that you used for 8-bit transfers 

to accomplish 16-bit transfers. The processor must be put in the 16-bit 

mode for both the accumulators and the index registers. You select the 

16-bit mode by setting the M and X bits in the P register to 0. You select 

the 8-bit mode by setting the M and X bits to 1. For example, you can use 

the load and store instructions to load three 16-bit registers-C, X, and 

Y-from memory or to store them in memory. You can also use the trans­

fer instructions to transfer a 16-bit register to any other 16-bit register, 

including the direct register D and the stack pointer S. The P register can 

only be directly modified by the reset P and set P instructions and by a 

stack operation. 



THE 65816 INSTRUCTION SET 103 

Stack Operations 
Recall from Chapter 3 that the stack operations move data between the 
top of the stack and the registers or memory. The 65816 has three types of 
stack instructions: push, pull, and push effective address. Any of the 65816 
registers, except the PC, may be pushed onto or pulled from the stack. 
For example, 

PHB 
pushes the 8-bit program bank register onto the stack. When an 8-bit reg­
ister is pushed onto the stack, the stack pointer is decremented by 1. 
Whenever a 16-bit register is pushed onto the stack, the stack pointer is 
decremented by 2. When a 16-bit register is put onto the stack, the high 
byte is pushed first. The number of bytes pushed onto the stack for a par­
ticular register is dependent on the mode of the 65816. Take care not to 
push a 16-bit register onto the stack and then switch to the 8-bit mode to 
pull the register. 

The three push-effective-address instructions allow memory locations to 
be pushed onto the stack. The push effective absolute (PEA) (also called 
push effective immediate) instruction pushes the two bytes following the 
opcode onto the stack. The push effective indirect (PEI) instruction pushes 
the two bytes addressed by the sum of the D register and the byte follow­
ing the opcode. The push effective relative (PER) instruction adds the two 
bytes following the opcode to the PC to form the pointer to the two bytes 
to be pushed onto the stack. 

DATA PROCESSING OPERATIONS OF THE 65816 
Data processing operations on the 65816 fall into four categories: 
arithmetic, logical, skew (shift and rotate), and bit manipulation. Let's 
examine each category. 

Arithmetic 
There are two main arithmetic operations: addition and subtraction. Both 
operations use the carry bit, so it is important to remember to clear the 
carry bit (CLC) before an addition and to set the carry bit (SEC) before a 
subtraction. You can use both instructions for BCD operations by setting 
the decimal bit (SED) in the processor status register. 

In general, all arithmetic operations modify some of the status register 
flags (see Appendix D). It is important to note, however, that the INC and 
DEC instructions, which operate on registers and memory locations, do 



I 04 PROGRAMMING THE 65816 

not modify the C or carry bit. This means that if you increment or decre­

ment past the value 255 (or 65,535 for 16-bit), the C bit will not be 
changed. If you need to detect a value changing from positive to negative, 

or vice versa, you must test the N and Z bits. 

Logical 
The 65816 provides three logical operations-AND, ORA (inclusive), and 

EOR (exclusive)-plus a comparison instruction, CMP. Let's examine these 

operations. 

AND Each logical operation is characterized by a truth table, which 

expresses the logical value of the result as a function of the inputs. Here is 

the truth table for AND: 

0 AND 0 = 0 
0 AND 1 = 0 
1AND0 = 0 or 
1AND1 = 1 

AND 
I o 
I 1 

0 1 
0 0 
0 1 

The AND operation is characterized by the fact that the output is 1 only 

if both inputs are 1. In other words, if one of the inputs is 0, the result is 

guaranteed to be 0. This feature, called masking, is used to zero a bit posi­

tion in a byte. 
The AND instruction is useful for clearing or masking one or more bit 

positions in a byte. Assume, for example, that you want to zero the right­

most four bits in a byte. The program is: 

LOA 
AND 

WORD 
#%11110000 

WORD CONTAINS 10101010 
11110000 IS MASK 

I assume that WORD is equal to 10101010. The result of this program is to 

leave the value 10100000 in the accumulator. The % is used to indicate a 

binary value. 

ORA The ORA instruction is the inclusive-OR operation. It is characterized by 

the following truth table: 

0 OR 0 = 0 
0 OR 1 = 1 
1 OR 0 = 1 or 
1 OR 1 = 1 

ORA 

I o 
I 1 

0 1 
0 1 
1 1 



THE 65816 INSTRUCTION SET I 05 

The logical OR, or ORA, is characterized by the fact that if one of the 
operands is 1, then the result is always 1. The obvious use of ORA, then, 
is to set any bit in a byte to 1. 

Let's set the rightmost four bits of WORD to the value 1. The program is: 

LOA WORD 
ORA %00001111 

Assuming that WORD contains 10101010, the final value of the accumula­
tor is 10101111. 

EOR EOR stands for exclusive-OR. The exclusive-OR differs from the 
inclusive-OR in one respect: the result is 1 only if exactly one of the oper­
ands is equal to 1. If both operands are equal to 1, then ORA gives a 
result of 1. The exclusive-OR gives a result of 0. The truth table is: 

0 EOR 0 = 0 EOR 0 1 
0 EOR 1 = 1 or I o 0 1 
1 EOR 0 = 1 I 1 1 0 
1 EOR 1 = 0 

You can use the exclusive-OR for comparisons. If any bit is different, 
then the exclusive-OR of two bytes will be nonzero. In addition, you can 
use the exclusive-OR to complement a byte. You do this by performing 
the EOR of a byte using all ones. The program appears below: 

LOA WORD 
EOR %11111111 

Assume that WORD contains 10101010. The final value of the accumu­
lator is 01010101. You can verify that this is the complement of the 
original value. 

You can use EOR to advantage as a bit toggle: the bits in the accumula­
tor will change, or toggle, each time an EOR is done, if the other byte 
used does not change. 

Skew (Shift and Rotate) 
It is necessary here to differentiate between the shift and rotate opera­
tions. In a shift operation, the contents of the register are shifted to the left 
or right by one bit position. The bit falling out of the register goes into the 
carry bit (C), and the bit coming in is 0. 

A rotation differs from a shift in that the bit coming into the register is 
the one that falls from the carry bit. The rotation is actually a 9-bit opera­
tion. Figure 4.1 illustrates a 9-bit rotation. For example, in the case of a 



I 06 PROGRAMMING THE 65816 

right rotation, the eight bits of the register are shifted right by one bit posi­

tion. The bit falling off the right part of the register goes, as usual, into the 

carry bit. Simultaneously, the bit coming in on the left end of the register is 

the previous value of the carry bit (before it is overwritten with the bit fall­

ing out). In mathematics this is called a 9-bit rotation, since the eight bits 

of the register, plus the ninth bit (the carry bit), are rotated right by one bit 

position. Conversely, the left rotation accomplishes the same result in the 

opposite direction. The rotation is 17 bits in the 16-bit processor mode. 

Bit Manipulation 

Figure 4.1: 

I have shown previously how you can use the logical operations to set or 

reset bits, or groups of bits, in accumulators or memory. You can also use 

two special instructions for operating on the processor status register: REP 

and SEP. The REP instruction, meaning "reset status bits," performs an 

AND function with P and the complement of a byte immediately follow­

ing the opcode and stores the result in P. Any bit that is set in A will be 

cleared in P. For example, 

REP #$30 

clears the M and X bits in P to set the processor into the 16-bit mode. 

The SEP instruction, meaning "set status bits," performs an OR function 

with A and P and stores the result in P. Any bit set in A will be set in P. For 

example, 

SEP #$30 

sets the M and X bits in P to put the processor into the 8-bit mode. 

7 0 c 

RIGHTC ~°l 
7 0 c 

~c I .. °l 
9-Bit Rotation 



THE 65816 INSTRUCTION SET I 07 

There are two instructions, similar to REP and SEP, that operate on the 
accumulator and memory. The TRB instruction means "test and reset 
bits." This instruction performs an AND function between the comple­
ment of A and a memory location, and stores the result in memory. Any 
bit that is set in A will be cleared in the memory. The other instruction is 
TSB, meaning "test and set bits," which performs a logical OR between A 
and memory and stores the result in memory. Any bit set in A will be set 
in memory after a TSB instruction. 

Finally, the bit test instruction, BIT, sets the status register with the result 
of performing AND on the accumulator and an 8-bit memory location. In 
the bit test instruction, neither the accumulator nor the memory location 
is changed. The AND operation changes only the bits in the P register. 
The N and V bits are set by bits 7 and 6 of the result, respectively. In the 
16-bit mode, bit 15 is copied to N and bit 14 is copied to V. 

TEST AND BRANCH OPERATIONS OF THE 65816 
Since testing operations rely heavily on the use of the status register, I will 
now describe the role of each of the status flag bits. Figure 4.2 shows the 
contents of the status register. 

C is the carry bit, V is overflow, Z is zero, and N is negative. Bit 2 is 
used with interrupts. The Mand X bits determine whether the 65816 is in 
the 8-bit or 16-bit mode. When the 65816 is in the emulation (6502) 
mode, bits 4 and 5 are set for special 6502 operations. The D bit puts the 
65816 into the BCD arithmetic mode when it is 1. The E bit determines 
whether the processor is in the emulation mode or in the native (65816) 
mode. You can change the E bit by exchanging it with the C bit, using the 
exchange carry and emulation bits (XCE) instruction. When E is 0, the 
65816 is in the native mode. When Eis 1, the 65816 is in the emulation 
mode. You can test the other four codes (C,V, Z, N) in conjunction with 

Figure 4.2: The Processor Status Register 



I 08 PROGRAMMING THE 65816 

conditional branch instructions. I will now describe the role of each status 

flag bit. 

Carry (C) 
In the case of nearly all microprocessors, and of the 65816 in particular, 

the carry bit assumes a dual role. First, it is used to indicate if an addition 

or subtraction operation has resulted in a carry (or borrow). Second, it is 

used as a ninth bit in the case of shift and rotate operations. Using a single 

bit to perform both roles facilitates some operations, such as a division 

operation. This should be clear from the description of division operations 

given in Chapter 3. 
When you are learning to use the carry bit, it is important to remember 

that all arithmetic operations either set or reset it, depending on the result 

of the instructions. Similarly, all shift and rotate operations use the carry 

bit and either set or reset it, depending on the value of the bit coming out 

of the word. 
In the case of logical instructions, you can use REP, SEP, CLC, and SEC to 

directly reset or set the carry bit. Instructions that affect the carry bit are 

ADC, ASL, CMP, CPX, CPY, LSR, ROL, ROR, SBC, and XCE. Also, some 

data transfer instructions and control instructions, including PLP and RTI, 

affect the C bit, and all the other status bits, because they load the status 

register. 

Overflow (V) 
I described the overflow flag in Chapter 1, when I introduced the two's 

complement notation. The overflow flag detects if, during an addition or 

subtraction, the sign of the result was "accidentally" changed, due to the 

overflow of the result into the sign bit. (Recall that, using an 8-bit repre­

sentation, the largest positive number and the smallest negative number in 

two's complement are + 127 and - 128, respectively. The largest number 

using a 16-bit representation is + 32767 and the smallest is - 32768.) The 

V bit is affected by ADC, BIT, and SBC. The CLV instruction always clears 

the V bit. 

Zero (Z) 
The Z status flag indicates if the value of a byte that has been computed or 

is being transferred, is 0. The Z bit is often used with comparison instruc­

tions to indicate a match. 
For an operation resulting in a zero result, or for a data transfer, the Z 

bit is set to 1 whenever the byte, or 16-bit word, is 0. Otherwise, Z is 

reset to 0. 



THE 65816 INSTRUCTION SET I 09 

The following instructions condition the value of the Z bit: ADC, AND, 
ASL, BIT, CMP, CPX, CPY, DEC, DEX, DEY, EOR, INC, INX, INY, LOA, LDX, 
LDY, LSR, ORA, PLA, PLB, PLO, PLX, PLY, ROL, ROR, SBC, TAX, TAY, TCD, 
TCS, TDC, TRB, TSB, TSC, TSX, TXA, TXY, TVA, TYX, and XBA. 

Negative (N) 
This status bit reflects the value of the most significant bit of a result, or of 
a byte (or 16-bit data) being transferred. In two's complement notation, 
the most significant bit represents the sign: 0 indicates a positive number, 
and 1 indicates a negative number. As a result, bit 7 (or bit 15, for 16-bit 
numbers) is called the negative bit. 

In most microprocessors, the sign bit plays an important role when 
communicating with input/output devices, because it is usually the most 
convenient bit to test. When examining the status of an input/output 
device, reading the status register automatically conditions the negative 
bit, which is then set to the value of bit 7 of the status register and can be 
conveniently tested by the program. This is why the status register of most 
input/output chips connected to microprocessor systems has its most 
important indicator (usually ready/not ready) in bit position 7. 

The following instructions affect the negative bit: ADC, AND, ASL, BIT, 
CMP, CPX, CPY, DEC, DEX, DEY, EOR, INC, INX, INY, LOA, LOX, LOY, 
ORA, PLA, PLB, PLD, PLX, PLY, ROL, ROR, SBC, TAX, TAY, TCD, TDC, 
TSC, TSX, TXA, TXY, TYA, TYX, and XBA. The LSR instruction always clears 
the N bit. 

Summary of the Status Register Bits 
The status bits automatically detect special conditions within the ALU of 
the microprocessor. You can conveniently test them by using specialized 
instructions, so that specific actions can be taken in response to the condi­
tion detected. It is important to understand the role of the various indica­
tors available, since most decisions made within the program are 
determined by the value of these status bits. All branches executed within 
a program jump to specified locations, depending on the status of these 
bits. The only exception involves the interrupt mechanism (described in 
Chapter 6), which may cause jumping to specific locations whenever a 
hardware signal is received on specialized pins of the 65816. 

At this point, you need only remember the main function of each bit. 
When programming, you may want to refer to the description of each 
instruction in this chapter to verify its effect on the various status bits. Most 
bits can be ignored most of the time, and if you are not yet familiar with 
them, you should not feel intimidated by their apparent complexity. Their 
use will become clearer as you examine other application programs. 



110 PROGRAMMING THE 65816 

The Branch Instructions 
A branch instruction causes a forced branching to a specified program 

address. It changes the normal flow of program execution from a sequen­

tial mode into one where a different segment of the program is suddenly 

executed. Branches may be conditional or unconditional. An uncondi­

tional jump is one where the branching occurs to a specific address, 

regardless of any other condition. A conditional branch is one where the 

branching occurs to a specific address only if one or more conditions are 

met. This is the type of jump instruction used to make decisions based 

upon data or computed results. 
To describe conditional branch instructions, you must understand the 

role of the processor status register (explained in the preceding section), 

since all branching decisions are based upon these status bits. I will now 

examine the branch instructions in more detail. 

The two main types of branch instructions provided by the 65816 are 

branch instructions within the main program (called branches), and the 

special branch instructions used to jump to and from a subroutine (JSR 

and RTS). As a result of any branch instruction, the program counter (PC) 

is reloaded with a new address, and the usual program execution resumes 

from that point on. The full power of branch instructions can be under­

stood only in the context of the various addressing modes provided by the 

microprocessor. (I will cover this topic in Chapter 5 when I discuss 

addressing modes.) I will consider here only the other aspects of these 

instructions. 
Branches may be either unconditional (always branching to a specified 

memory address) or conditional. In the case of a conditional branch, one 

or more of the four status code bits-Z, C, V, N-may be tested for the 

value 0 or 1. 
The corresponding abbreviations for the individual bits are: 

BCC carry clear (C = 0) 

BCS carry set (C = 1) 

BEQ equal to zero (Z = 1) 

BNE not equal to zero (Z = 0) 

BMI minus (N = 1) 

BPL plus (N = 0) 

BVC overflow clear (V = 0) 

BVS overflow set (V = 1) 

The availability of conditional branches is a powerful resource in a com­

puter, although this resource is not provided on all microprocessors. This 

resource does, however, improve the efficiency of programs by imple­

menting in a single instruction what would normally require two 



THE 65816 INSTRUCTION SET 111 

instructions. There is, however, one drawback to branch instructions on 
most computers: the address specified with the branch instruction is only 
one byte in length. This byte is added to the PC to obtain the new 
address. This means that a branch may move the PC only 127 bytes for­
ward or 128 bytes backward from the location of the branch instruction. 
Branching farther is not possible. However, the 65816 does have a special 
long-branch instruction. 

The long branch (BRL) specifies a 16-bit address with the instruction. 
When added to the PC, branching is allowed to any of the 65,536 mem­
ory locations in a 64K bank of memory. This type of branch instruction 
removes the need to branch to a jump instruction UMP). 

Finally, a special return instruction, RTI, is provided with interrupt rou­
tines. Chapter 6 will discuss this instruction in detail. 

One more type of specialized branch is available: the break (BRK) 
instruction. The break pushes the contents of the program counter and 
status register onto the stack. The contents of memory locations OOFFE6 
and OOFFE7 are then deposited in PCL and PCH, respectively. 

Important: PC + 2 is the value saved on the stack. This may not be the 
next instruction, and' a correction may be necessary. BRK is usually used 
to patch an existing program where BRK replaces a two-byte instruction. 
When debugging a program, you generally use BRK to cause an exit to 
the monitor. 

INPUT/OUTPUT INSTRUCTIONS ON THE 65816 
You can address input/output devices in one of two ways: as memory 
locations (using any one of the instructions described previously) or by 
using specific input/output instructions. Chapter 6 examines input/output 
techniques in detail. The 65816 has no special instructions devoted to 
input/output. Usual memory addressing instructions use three bytes: one 
for the opcode and two for the address. As a result, these instructions exe­
cute slowly, since they require three memory accesses. However, if you 
use the special direct page addressing mode, where the address is formed 
by the direct page register and a byte in the instruction, then the instruc­
tions to access an input/output device need only be two bytes in length. 
This allows faster execution. 

CONTROL INSTRUCTIONS ON THE 65816 
Control instructions modify the operating mode of the CPU and manipu­
late its internal status information. The 65816 provides three control 
instructions: NOP, WAI, and STP. 



112 PROGRAMMING THE 65816 

The NOP instruction is a no-operation instruction that does nothing for 

two cycles. It is typically used either to introduce a deliberate delay (2 

cycles, or 1 microsecond with a 2 MHz clock) or to fill gaps created in a 

program during the debugging phase. 
The WAI instruction is used in conjunction with interrupts. It actually 

suspends the operation of the CPU. The CPU then resumes operation 

whenever an interrupt signal is received. A WAI is used to ensure that 

minimum time elapses between an interrupt and the program servicing 

that interrupt. 
Finally, the last control instruction is stop the clock (STP). The processor 

and the clock will stop when this instruction is executed. The processor will 

not be started again until an external reset is done. 

SUMMARY 

I have now described the five categories of instructions available on the 

65816. Specific details on the individual instructions are presented in the 

following section of this chapter. You need not understand the role of 

each instruction to start programming. At the beginning, it is sufficient to 

know a few essential instructions of each type; however, as you begin 

writing your own programs, you will want to learn all the instructions on 

the 65816 so that you can make your programs as efficient as possible. 

I have not yet described one important aspect of programming: the 

addressing techniques implemented on the 65816 that facilitate data 

retrieval within the memory space. I will cover these addressing tech­

niques in the next chapter. 

fXERCISES 

4-1: Write a three-line program that zeros bits 1 and 6 of WORD. 

4-2: What will happen if you use a MASK equaling 11111111 with an AND 

instruction? 

4-3: What will happen if you use the instruction ORA #% 10101111 and A 

contains 10101111? 



THE 65816 INSTRUCTION SET 113 

4-4: What is the effect of using OR with FF hexadecimal? 

4-5: What is the effect of EOR, if you use a register with 00 hexadecimal, 
instead of 11111111, to complement a byte? 



114 PROGRAMMING THE 65816 

THE 65816 INSTRUCTIONS: 
INDIVIDUAL DESCRIPTIONS 

ABBREVIATIONS AND SYMBOLS 
FOR INSTRUCTION DESCRIPTIONS 

Flags 

'\\\\\\\\\\\\~\\\\\\"" 

____ ., _____________ _ 

X - flag changed according to operation or result of instruction 

- flag unchanged (space) 

0 - flag cleared by instruction 

1 - flag set by instruction 

Notation 
A, B, C, D, X, Y, S, P, PC - registers 

- - data transfer 
- - exchange data 
M - byte or 16-bit word memory operand of valid type for given 

ADDR 
N 
NN 
PCH 
PCL 
v 
/\ 
() 

instruction 
- address of instruction or data 

- 8-bit immediate mode operand 

- 16-bit immediate mode operand 

- most significant byte of 16-bit register 

- least significant byte of 16-bit register 

- AND function 
- OR function 
- use the operand as a pointer into memory 



THE 65816 INSTRUCTION SET 115 

I ADC 1-I --A-dd_M_e_m-ory-to-A-cc_u_m_u_la-to-r -w-it-h -C-ar_ry_ 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Modes: 

ADCM 

A-A+M+C 

The carry bit and memory operand are added into 
the accumulator. 

N V M X D I Z C 

Ix Ix I I I I Ix Ix I 

Immediate 
Absolute 
Absolute Long 
Direct 
Direct Indirect Indexed 
Direct Indirect Long Indexed 
Direct Indexed Indirect 
Direct Indexed with X 
Absolute Indexed with X 
Absolute Long Indexed with X 
Absolute Indexed with Y 
Direct Indirect 
Direct Indirect Long 
Stack Relative 
Stack Relative Indirect Indexed 



116 PROGRAMMING THE 65816 

I AND ji---A-N_D_M_e_m_o_ry_w_ith-A-cc_u_m_u_la-to_r __ _ 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Modes: 

ANDM 

A-A/\M 

The AND function operates on accumulator A and 

the memory location, and the result is stored in A. 

N V M X D I 

Ix I I I I I 

Immediate 
Absolute 
Absolute Long 
Direct 

z c 

Ix I I 

Direct Indirect Indexed 
Direct Indirect Long Indexed 
Direct Indexed Indirect 
Direct Indexed with X 
Absolute Indexed with X 
Absolute Long Indexed with X 
Absolute Indexed with Y 
Direct Indirect 
Direct Indirect Long 
Stack Relative 
Stack Relative Indirect Indexed 



ASL 

Mnemonics: 

Function: 

Description: 

Status Register: 

Addressing 
Modes: 

THE 6S8 I 6 INSTRUCTION SET 117 

Arithmetic Shift Left 

ASL M; ASLA 

operand A or M 

c-111111111-o 
b7 bO 

All the bits in the operand are shifted left by one posi­

tion. Bit 7 is transferred to the carry bit; bit 0 becomes 

a zero. In the 16-bit mode, bit 15 is transferred to the 

carry bit. 

N V M X D I Z C 

Ix I I I I I Ix Ix I 

Absolute 
Direct 
Accumulator 
Direct Indexed with X 
Absolute Indexed with X 



118 PROGRAMMING THE 65816 

BCC 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Mode: 

Branch on Carry Clear 

BCC N 

If C = 0 then: PC +- PC + N 

If the C bit is clear, then a PC relative branch is exe­
cuted. The branch can access any instruction in the 
range + 129 to - 126 bytes relative to the first byte of 
the branch instruction. 

N V M X D I Z C 

I I 
(no change) 

Relative 



BCS 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Mode: 

THE 65816 INSTRUCTION SET 119 

Branch on Carry Set 

BCS N 

If C = 1 then: PC - PC + N 

If the C bit is set, then a PC relative branch is exe­

cuted. The branch can access any instruction in the 

range + 129 to -126 bytes relative to the first byte of 

the branch instruction. 

N V M X D I Z C 

I I I I I I I I 
(no change) 

Relative 



120 PROGRAMMING THE 65816 

BEQ 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Mode: 

Branch on Equal 

BEQ N 

If Z = 1 then: PC+- PC + N 

If the zero bit is set, then a PC relative branch is exe­
cuted. This is true after a subtract or compare on any 
binary values, if the register was the same as the 
memory operand. The branch can access any instruc­
tion in the range + 129 to - 126 bytes relative to the 
first byte of the branch instruction. 

N V M X D I z c 
I I I I I I I I I 

(no change) 

Relative 



BIT 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Modes: 

THE 65816 INSTRUCTION SET 121 

Bit Test 

BITM 

A/\M 

The AND function operates on the accumulator A 

and a memory operand, and the result is discarded. 

Only the status bits are affected; neither operand is 
affected. In the 8-bit mode, the N bit is set to bit 7 and 

the V bit is set to bit 6. In the 16-bit mode, the N bit is 

set to bit 15 and the V bit is set to bit 14. 

N V M X D I Z C 

Ix Ix I Ix I I 
b7 b6 
b15 b14 

Immediate 
Absolute 
Direct 
Direct Indexed with X 
Absolute Indexed with X 



122 PROGRAMMING THE 65816 

BMI 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Mode: 

Branch on Minus 

BMI N 

If N = 1 then: PC.,_ PC + N 

If the negative bit is set, then a PC relative branch is 
executed. This condition is true after an operation if 
the sign bit was set. The branch can access any 
instruction in the range + 129 to - 126 bytes relative 
to the first byte of the branch instruction. 

N V M X D I Z C 

I I I I I I I I I 
(no change) 

Relative 



BNE 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Mode: 

THE 6S8 I 6 INSTRUCTION SET 123 

Branch on Not Equal 

BNE N 

If Z = 0 then: PC+- PC + N 

If the zero bit is clear, then a PC relative branch is 

executed. This is true after a subtract or compare on 

any binary values, if the register was not the same as 

the memory operand. The branch can access any 

instruction in the range + 129 to - 126 bytes relative 

to the first byte of the branch instruction. 

N V M X D I Z C 

I I I 
(no change) 

Relative 



124 PROGRAMMING THE 65816 

BPL 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Mode: 

Branch on Plus 

BPL N 

If N = 0 then: PC +- PC + N 

If the negative bit is clear, then a PC relative branch is 
executed. This condition is true after an operation if 
the sign bit was clear. The branch can access any 
instruction in the range + 129 to - 126 bytes relative 
to the first byte of the branch instruction. 

N V M X D I Z C 

I I I I I I I I I 
(no change) 

Relative 



BRA 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Mode: 

THE 65816 INSTRUCTION SET 125 

Branch Always 

BRAN 

PC+-PC+N 

A PC relative branch is always executed. 

N V M X D I Z C 

I I I I I I I I I 
(no change) 

Relative 



126 PROGRAMMING THE 65816 

BRK 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Mode: 

Break 

BRK 

(5) - PBR, (5) - PC, (5) - P, PC - (FFE6,FFE7) 

Break operates like an interrupt: the program bank 
register is pushed on the stack, then the program 
counter, and finally the status register (P). The con­
tents of memory locations FFE6 and FFE7 are then 
deposited in PCL and PCH, respectively. The program 
bank register is set to 0. Important: Unlike an inter­
rupt, break saves PC + 2. PC + 2 may not be the 
next instruction, and a correction may be necessary. 

N V M X D I Z C 

I o I 1 I I I 

Stack 



BRL 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Mode: 

THE 65816 INSTRUCTION SET 127 

Branch Long Always 

BRL NN 

PC- PC+ NN 

A PC relative branch is always executed. The branch 

long can access any address in a 64K memory bank. 

N V M X D I Z C 

I I I I I I I I I 
(no change) 

Relative Long 



128 PROGRAMMING THE 65816 

BVC 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Mode: 

Branch on Overflow Clear 

BVC N 

If V = 0 then: PC +- PC + N 

If the overflow bit is clear, then a PC relative branch is 
executed. This condition is true after an operation of 
two's complement values, if the result was valid (there 
was no overflow). The branch can access any instruc­
tion in the range + 129 to - 126 bytes relative to the 
first byte of the branch instruction. 

N V M X D I z c 
I I I I I I I 

(no change) 

Relative 



BYS 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Mode: 

THE 65816 INSTRUCTION SET 129 

Branch on Overflow Set 

BVS N 

If V = 1 then: PC - PC + N 

If the overflow bit is set, then a PC relative branch is 

executed. This condition is true after an operation of 

two's complement values, if the result was invalid 

(there was an overflow). The branch can access any 

instruction in the range + 129 to - 126 bytes relative 

to the first byte of the branch instruction. 

N V M X D I z c 

I I I I I I I I I 
(no change) 

Relative 



130 PROGRAMMING THE 65816 

CLC 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Mode: 

Clear the Carry Bit 

CLC 

c-o 

The carry bit is set to 0. This is often done before an 
ADC. 

N V M X D I Z C 

I I I I I Io I 

Implied 



CLO 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Mode: 

THE 65816 INSTRUCTION SET 131 

Clear the Decimal Bit 

CLD 

o-o 

The decimal bit is cleared, setting the binary mode for 

ADC and SBC. 

N V M X D I Z C 

Io I I I I 

Implied 



132 PROGRAMMING THE 65816 

CLI 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Mode: 

Clear the Interrupt Disable Bit 

cu 

1-0 

The interrupt disable bit is cleared. This enables inter­
rupts. An interrupt handling routine must always clear 
the I bit, or else other interrupts may be lost. 

N V M X D I Z C 

I I I I I Io I I I 

Implied 



CLV 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Mode: 

THE 65816 INSTRUCTION SET 133 

Clear the Overflow Bit 

CLV 

The overflow bit is cleared. 

N V M X D I Z C 

I Io I I I I I I I 

Implied 



134 PROGRAMMING THE 65816 

CMP 

Mnemonic: 

Function: 

Description: 

Compare Memory and Accumulator 

CMPM 

A-M 

The memory operand is subtracted from the accumu­
lator, and the result is discarded. Only the status regis­
ter bits are affected; neither operand is affected. If A is 
greater than or equal to M, the C bit is set. 

Status Register: N v M x D z c 

Addressing 
Modes: 

Ix I I I I I 

Immediate 
Absolute 
Absolute Long 
Direct 

Ix Ix I 

Direct Indirect Indexed 
Direct Indirect Long Indexed 
Direct Indexed Indirect 
Direct Indexed with X 
Absolute Indexed with X 
Absolute Long Indexed with X 
Absolute Indexed with Y 
Direct Indirect 
Direct Indirect Long 
Stack Relative 
Stack Relative Indirect Indexed 



COP 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Mode: 

THE 65816 INSTRUCTION SET 135 

Coprocessor 

COP 

(S) - PBR, (S) - PC, (S) - P, PC - (FFE4,FFE5) 

Coprocessor operates like an interrupt: the program 

bank register is pushed on the stack, then the pro­

gram counter, and finally the status register (P). The 

contents of memory locations FFE4 and FFES are then 

deposited in PCL and PCH, respectively. The program 

bank register is set to 0. 

N V M X 0 I Z C 

I I I I Io I 1 I I I 

Stack 



136 PROGRAMMING THE 65816 

CPX 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Modes: 

Compare Memory and Index X 

CPXM 

X - M 

The memory operand is subtracted from the X index 
register, and the result is discarded. Only the status 
register bits are affected; neither operand is affected. 
If X is greater than or equal to M, the C bit is set. 

N V M X D I 

Ix I I I I I 

Immediate 
Absolute 
Direct 

z c 
Ix Ix I 



CPY 

Mnemonic: 

Function: 

Description: 

THE 65816 INSTRUCTION SET 137 

Compare Memory and Index Y 

CPY M 

y - M 

The memory operand is subtracted from the Y index 
register, and the result is discarded. Only the status 
register bits are affected; neither operand is affected. 

If Y is greater than or equal to M, the C bit is set. 

Status Register: N v M x D z c 

Addressing 
Modes: 

Ix I I I I I 

Immediate 
Absolute 
Direct 

lxlxl 



138 PROGRAMMING THE 65816 

DEC 

Mnemonics: 

Function: 

Description: 

Decrement 

DEC M; DEC A 

A+-A-lorM+-M-1 

One is subtracted from the specified operand. Note 
that the carry bit is not affected. 

Status Register: N V M X D z c 

Addressing 
Modes: 

Ix I I I I I 

Absolute 
Direct 
Accumulator 

Ix I I 

Direct Indexed with X 
Absolute Indexed with X 



DEX 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Mode: 

THE 65816 INSTRUCTION SET 139 

Decrement Index X 

DEX 

x-x-1 
One is subtracted from the X index register. Note that 
the carry bit is not affected. 

N V M X D I Z C 

Ix I I I I I Ix I I 

Implied 



140 PROGRAMMING THE 65816 

DEY 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Mode: 

Decrement Index Y 

DEY 

v-v-1 

One is subtracted from the Y index register. Note that 
the carry bit is not affected. 

N V M X D I Z C 

Ix I I I I I Ix I I 

Implied 



EOR 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Modes: 

THE 65816 INSTRUCTION SET 141 

Exclusive-OR Memory with Accumulator 

EORM 

A +-A EOR M 

The logical exclusive-OR operates on accumulator A 
and a memory location, and the result is stored in A. 

N V M X D I 

Ix I I I I I 

Immediate 
Absolute 
Absolute Long 
Direct 

z c 
Ix I I 

Direct Indirect Indexed 
Direct Indirect Long Indexed 
Direct Indexed Indirect 
Direct Indexed with X 
Absolute Indexed with X 
Absolute Long Indexed with X 
Absolute Indexed with Y 
Direct Indirect 
Direct Indirect Long 
Stack Relative 
Stack Relative Indirect Indexed 



142 PROGRAMMING THE 65816 

INC 

Mnemonics: 

Function: 

Description: 

Status Register: 

Addressing 
Modes: 

Increment 

INCM; INCA 

A +- A + 1 or M +- M + 1 

One is added to the specified operand. Note that the 
carry bit is not affected. 

N V M X D I 

Ix I I I I I 

Absolute 
Direct 
Accumulator 

z c 
Ix I I 

Direct Indexed with X 
Absolute Indexed with X 



INX 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Mode: 

THE 65816 INSTRUCTION SET 143 

Increment Index X 

INX 

X+-X+1 

One is added to the X index register. Note that the 
carry bit is not affected. 

N V M X D I Z C 

Ix I Ix I I 

Implied 



144 PROGRAMMING THE 65816 

INY 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Mode: 

Increment Index Y 

INY 

Y+-Y+1 

One is added to the Y index register. Note that the 
carry bit is not affected. 

N V M X D I Z C 

Ix I Ix I I 

Implied 



JML 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Mode: 

THE 65816 INSTRUCTION SET 145 

Jump Long 

JML ADDR 

PC - (ADDR) PBR - (ADDR + 2) 

A new address is loaded into the program counter 
and the program bank register. The immediate two 
bytes after the opcode point to the three bytes of the 
new address. 

N V M X D I Z C 

I I I I I I I I 
(no change) 

Absolute Indirect 



146 PROGRAMMING THE 65816 

JMP 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Modes: 

jump 

JMPADDR 

PC +-ADDR 

A new address is loaded into the program counter. 
This address can be 16 bits to jump within a bank or 
24 bits to jump anywhere in the 16-megabyte address 
space. 

N V M X D I z c 

I I I I I I I I I 
(no change) 

Absolute 
Absolute Long 
Absolute Indirect 
Absolute Indexed Indirect 



JSL 

Mnemonic: 

Function: 

Description: 

THE 65816 INSTRUCTION SET 147 

jump Subroutine Long 

JSL ADDR 

(S) +- PBR; S +- S - 1 
(S) +- PCH; S +- S - 1 
(S) +- PCL; S +- S - 1 
PC +- ADDR; PBR +- ADDR + 2 

The PC and program bank register are pushed onto 
the stack and a new PC and PBR are loaded from 
memory. This instruction allows a jump to a subrou­
tine at any address in the 16-megabyte memory 
space. 

Status Register: N v M x D I z c 

Addressing 
Mode: 

I I I I I I I 
(no change) 

Absolute Long 



148 PROGRAMMING THE 65816 

JSR 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Modes: 

jump to Subroutine 

JSR ADDR 

(5) - PCH; S - S - 1 
(S) - PCL; S - S - 1 
PC-ADDR; 

The PC is pushed onto the stack and a new PC is 
loaded from memory. 

N V M X D I Z C 

I I I I I I I I I 
(no change) 

Absolute 
Absolute Indexed Indirect 



LOA 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Modes: 

THE 65816 INSTRUCTION SET 149 

Load Accumulator from Memory 

LDAM 

The memory operand is loaded into the accumulator. 

N V M X D I Z C 

Ix I I I I I Ix I I 

Immediate 
Absolute 
Absolute Long 
Direct 
Direct Indirect Indexed 
Direct Indirect Long Indexed 

Direct Indexed Indirect 
Direct Indexed with X 
Absolute Indexed with X 
Absolute Long Indexed with X 
Absolute Indexed with Y 
Direct Indirect 
Direct Indirect Long 
Stack Relative 
Stack Relative Indirect Indexed 



150 PROGRAMMING THE 65816 

LOX 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Modes: 

Load Index Register X 

LDXM 

The memory operand is loaded into the X index register. 

N V M X D I Z C 

Ix I Ix I I 

Immediate 
Absolute 
Direct 
Direct Indexed with Y 
Absolute Indexed with Y 



LOY 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Modes: 

THE 65816 INSTRUCTION SET 151 

Load Index Register Y 

LDY M 

The memory operand is loaded into the Y index register. 

N V M X D I Z C 

Ix I I I I I Ix I I 

Immediate 
Absolute 
Direct 
Direct Indexed with X 
Absolute Indexed with X 



152 PROGRAMMING THE 65816 

LSR 

Mnemonics: 

Function: 

Description: 

Status Register: 

Addressing 
Modes: 

Logical Shift Right 

LSR M; LSR A 

operand A or M 

o-111111111-c 
b7 bO 

All the bits in the operand are shifted right by one 
position. Bit 0 is transferred to the carry bit; bit 7 
becomes a zero. In the 16-bit mode, bit 15 is set to 0. 

N V M X D I Z C 

Io I I I I I Ix Ix I 

Absolute 
Direct 
Accumulator 
Direct Indexed with X 
Absolute Indexed with X 



MVN 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Mode: 

THE 65816 INSTRUCTION SET 153 

Block Move Negative 

MVN #NN 

M +- M; X +- X + 1; Y +- Y + 1; A +- A - 1; DBR +- N 

Move a block of memory starting at a low address 

and ending at a higher address. The Y index register 

contains the destination address of the block, and the 

X register contains the source address. Accumulator A 

contains the number of bytes to move minus one. The 

X and Y registers are incremented after each itera­

tion. The A register is decremented after each 

iteration. The first byte after the opcode is put in the 

data bank register and used with Y to form the 24-bit 

address of the destination. The second byte is used as 

the data bank address for the source. 

N V M X D I Z C 

I I I I I I I I I 
(no change) 

Block Source Bank, Destination Bank 



154 PROGRAMMING THE 65816 

MVP 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Mode: 

Block Move Positive 

MVP#NN 

M - M; X - X - 1; Y - Y - 1; A - A - 1; DBR - N 

Move a block of memory starting at a high address 
and ending at a lower address. The Y index register 
contains the destination address of the block, and the 
X register contains the source address. Accumulator A 
contains the number of bytes to move minus one. The 
X and Y registers are decremented after each itera­
tion. The A register is also decremented after each 
iteration. The first byte after the opcode is put in the 
data bank register and used with Y to form the 24-bit 
address of the destination. The second byte is used as 
the data bank address for the source. 

N V M X D I Z C 

I I I I I I I I I 
(no change) 

Block Source Bank, Destination Bank 



NOP 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Mode: 

THE 65816 INSTRUCTION SET 155 

No Operation 

NOP 

None 

The processor does nothing for two cycles. This 

instruction is used to introduce delays or to fill 

patches in a program. 

N V M X D I Z C 

I I I I I I I I I 
(no change) 

Implied 



156 PROGRAMMING THE 65816 

ORA 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Modes: 

OR Memory with Accumulator 

ORAM 

A+-AVM 

The OR function operates on accumulator A and a 
memory location, and the result is stored in A. 

N V M X D I Z C 

Ix I I I I I Ix I I 

Immediate 
Absolute 
Absolute Long 
Direct 
Direct Indirect Indexed 
Direct Indirect Long Indexed 
Direct Indexed Indirect 
Direct Indexed with X 
Absolute Indexed with X 
Absolute Long Indexed with X 
Absolute Indexed with Y 
Direct Indirect 
Direct Indirect Long 
Stack Relative 
Stack Relative Indirect Indexed 



PEA 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 

THE 65816 INSTRUCTION SET 157 

Push E.ff ective Absolute Address 
on the Stack 

Push Immediate Data Word on the Stack 

PEA#NN 

(5) +-(Pc+ 1) s- s - 1 / (S)<- <ti, t.;,'<"'~,'L 
(5) +-{PC + ~ S +- S - 1 I l':.) <:- > NJ SI.;:- r v 

The two bytes of data immediately following the 

opcode are pushed onto the stack. 

N V M X D I Z C 

I I I I I I I I I 
(no change) 

Mode: Stack 



158 PROGRAMMING THE 65816 

PEI 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 

Push Effective Indirect Address on the Stack 

PEI #N 

(S) +- (D +(PC+ 1)); s +-S - 1 i (s)c:.-(D+-tl\ ~_:_s ~1 
(S) +- (D + (PC + 1) + 1); s +- s - 1 I ( s) "-'-( 0 i N H )j t;<::-'-:, -1 

The byte of data immediately following the opcode is 
added to the direct register (D), and the D register is 
used as a pointer to two bytes to be put on the stack. 
The D register is not changed, and the two bytes must 
be in bank zero. 

N V M X D I Z C 

I I I I I I I I I 
(no change) 

Mode: Stack 



PER 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 

THE 65816 INSTRUCTION SET 159 

Push Effective PC Relative Address 
on the Stack 

PER #NN 

(5) - PC + NN + 2; S - S - 2 

The two bytes of data immediately following the 

opcode are added to the program counter, after the 

PC has been updated to point to the next instruction, 

and this value is then stored on the stack. The PC and 

program bank register are not changed. The two 

bytes are actually added to the PC + 2. 

N V M X D I Z C 

I I I I I I I I I 
(no change) 

Mode: Stack 



160 PROGRAMMING THE 65816 

PHA 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 

Push the Accumulator on the Stack 

PHA 

(S) +- A; S +- S - 1 or S +- S - 2 

The contents of the accumulator are pushed onto the 
stack. If the processor is in the 16-bit memory mode, 
both bytes are put onto the stack and the stack 
pointer Sis decremented by 2. 

N V M X D I Z C 

I I I I I I I I I 
(no change) 

Mode: Stack 



PHB 

Mnemonic: 

Function: 

Description: 

THE 65816 INSTRUCTION SET 161 

Push the Data Bank Register on the Stack 

PHB 

(5) +- DBR; S +- S - 1 

The contents of the data bank register are pushed 

onto the stack. 

Status Register: N v M x D z c 

I I I I I I I I I 
(no change) 

Addressing 
Mode: Stack 



162 PROGRAMMING THE 65816 

PHO 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 

Push the Direct Register on the Stack 

PHO 

(S) +- D; S +- S - 2 

The contents of the direct register are pushed onto 
the stack. 

N V M X D I Z C 

I I I I I I I I I 
(no change) 

Mode: Stack 



PHK 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 

THE 65816 INSTRUCTION SET 163 

Push the Program Bank Register 
on the Stack 

PHK 

(5) - PBR; S - S - 1 

The contents of the program bank register are pushed 

onto the stack. 

N V M X D I Z C 

I I I I 
(no change) 

Mode: Stack 



164 PROGRAMMING THE 65816 

PHP 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 

Push the Status Register on the Stack 

PHP 

(S) +- P; S +- S - 1 

The contents of the processor status register are 
pushed onto the stack. 

N V M X D I Z C 

I I 
(no change) 

Mode: Stack 



PHX 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 

THE 65816 INSTRUCTION SET 165 

Push the Index Register X on the Stack 

PHX 

(5) - X; S - S - 1 or S - S - 2 

The contents of the X index register are pushed onto 

the stack. If the processor is in the 16-bit memory 

mode, both bytes are put on the stack and the stack 

pointer (5) is decremented by 2. 

N V M X D I Z C 

I I I I I I I I I 
(no change) 

Mode: Stack 



166 PROGRAMMING THE 65816 

PHY 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 

Push the Index Register Y on the Stack 

PHY 

(5) +- Y; S +- S - 1 or S +- S - 2 

The contents of the Y index register are pushed onto 
the stack. If the processor is in the 16-bit memory 
mode, both bytes are put on the stack and the stack 
pointer (5) is decremented by 2. 

N V M X D I Z C 

I I I I I I I I I 
(no change) 

Mode: Stack 



PLA 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Mode: 

THE 65816 INSTRUCTION SET 167 

Pull the Accumulator off the Stack 

PLA 

S +- S + 1 or S +- S + 2; A +- {S) 

The contents of the accumulator are pulled from the 
stack. If the processor is in the 16-bit memory mode, 
both bytes are pulled off the stack and the stack 
pointer (5) is incremented by 2. 

N V M X D I Z C 

Ix I I I I I Ix I I 

Stack 



168 PROGRAMMING THE 65816 

PLB 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Mode: 

Pull the Data Bank Register off the Stack 

PLB 

S - S + 1; DBR - (S) 

The contents of the data bank register are pulled off 
the stack. 

N V M X D I Z C 

Ix I I I I Ix I I 

Stack 



PLD 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Mode: 

THE 65816 INSTRUCTION SET 169 

Pull the Direct Register off the Stack 

PLO 

S +- S + 2; D +- (5) 

The contents of the direct register are pulled off the 
stack. 

N V M X D I Z C 

Ix I I I I I Ix I I 

Stack 



170 PROGRAMMING THE 65816 

PLP 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Mode: 

Pull the Status Register off the Stack 

PLP 

s +- s + 1 ; p +- (5) 

The contents of the processor status register are 
pulled off the stack. 

N V M X D I Z C 

lxlxlxlxlxlxlxlxl 

Stack 



PLX 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Mode: 

THE 65816 INSTRUCTION SET 171 

Pull the Index Register X off the Stack 

PLX 

S +- S + 1 or S +- S + 2; X +- (5) 

The contents of the X index register are pulled off the 
stack. If the processor is in the 16-bit memory mode, 
both bytes are pulled off the stack and the stack 
pointer (5) is incremented by 2. 

N V M X D I Z C 

Ix I I I I I I I I 

Stack 



172 PROGRAMMING THE 65816 

PLY 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Mode: 

Pull the Index Register Y off the Stack 

PLY 

S +- S + 1 or S +- S + 2; Y +- (S) 

The contents of the Y index register are pulled off the 
stack. If the processor is in the 16-bit memory mode, 
both bytes are pulled off the stack and the stack 
pointer (S) is incremented by 2. 

N V M X D I Z C 

Ix I I I I Ix I I 

Stack 



REP 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Mode: 

THE 65816 INSTRUCTION SET 173 

Reset Status Bits 

REP#N 

P +-PAN 

The AND function operates on the status register (P) 
and the complement of the byte immediately follow­
ing the opcode, and the result is stored in P. 

N V M X D I Z C 

lxlxlxlxlxlxlxlxl 

Immediate 



174 PROGRAMMING THE 65816 

ROL 

Mnemonics: 

Function: 

Rotate Left 

ROLM; ROLA 

~;AorM µ 
L!-1~11-1 I I I 

b7 bO 

Description: All the bits in the operand are shifted left by one posi­
tion. Bit 0 comes from the carry bit, and bit 7 is put 
into the carry bit. In the 16-bit mode, bit 15 is trans­
ferred to the carry bit. 

Status Register: N v M x D I z c 
Ix I I I I I Ix Ix I 

Addressing 
Modes: Absolute 

Direct 
Accumulator 
Direct Indexed with X 
Absolute Indexed with X 



ROR 

Mnemonics: 

Function: 

THE 65816 INSTRUCTION SET 175 

Rotate Right 

RORM; RORA 

c 
operand A or M 

I I I I I I I I I 
b7 bO 

Description: All the bits in the operand are shifted right by one 
position. Bit 7 comes from the carry bit, and bit 0 is 
put into the carry bit. In the 16-bit mode, bit 15 
is transferred from the carry bit. 

Status Register: N V M X D I Z C 

Ix I I I I I Ix Ix I 
Addressing 
Modes: Absolute 

Direct 
Accumulator 
Direct Indexed with X 
Absolute Indexed with X 



176 PROGRAMMING THE 65816 

RTI 

Mnemonic: 

Function: 

Return from Interrupt 

RTI 

s - s + 1; p - (5) 
S - S + 1; PCL - (5) 
S - S + 1; PCH - (5) 
S - S + 1; PBR - (5) 

Description: The status register, the PC, and the program bank reg­
ister are pulled from the stack memory. This instruc­
tion reverses the action of an interrupt and should be 
placed at the end of an interrupt routine. 

Status Register: N v M X D I z C 

lxlxlxlxlxlxlxlxl 

Addressing 
Mode: Stack 



RTL 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 

THE 65816 INSTRUCTION SET 177 

Return from Subroutine Long 

RTL 

S +- S + 1; PCL +- (5) 
S +- S + 1; PCH +- (5) 
S +- S + 1; PBR +- (5) 

The PC and program bank register are pulled from 
the stack memory. This instruction reverses the action 
of a JSL. 

N V M X D I Z C 

I I I I I I 
(no change) 

Mode: Stack 



178 PROGRAMMING THE 65816 

RTS 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 

Return from Subroutine 

RTS 

S - S + 1; PCL - (S) 
S - S + 1 ; PCH - (S) 

The PC is pulled from the stack memory. This instruc­
tion reverses the action of a JSR. 

N V M X D I Z C 

I I I I I I I I I 
(no change) 

Mode: Stack 



SBC 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Modes: 

THE 65816 INSTRUCTION SET 179 

Subtract Memory from Accumulator 
with Carry 

SBCM 

A+-A-M-C 

The memory operand and complement of the carry 
bit are subtracted from the accumulator. 

N V M X D I Z C 

Ix Ix I I I I Ix Ix I 

Immediate 
Absolute 
Absolute Long 
Direct 
Direct Indirect Indexed 
Direct Indirect Long Indexed 
Direct Indexed Indirect 
Direct Indexed with X 
Absolute Indexed with X 
Absolute Long Indexed with X 
Absolute Indexed with Y 
Direct Indirect 
Direct Indirect Long 
Stack Relative 
Stack Relative Indirect Indexed 



180 PROGRAMMING THE 65816 

SEC 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Mode: 

Set the Carry Bit 

SEC 

c-1 

The carry bit is set to 1. This is often done before an 
SBC. 

N V M X D I Z C 

I I I I I I 1 I 

Implied 



SEO 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Mode: 

THE 65816 INSTRUCTION SET 181 

Set the Decimal Bit 

SED 

The decimal bit is set to 1, specifying the decimal 
mode for AOC and SBC. 

N V M X D I Z C 

I 1 I I I 

Implied 



182 PROGRAMMING THE 65816 

SEI 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Mode: 

Set the Interrupt Disable Bit 

SEI 

I+- 1 

The interrupt disable bit is set, disabling interrupts. 
This instruction is used during interrupt handling rou­
tines. 

N V M X D I Z C 

I I I I 1 I I I 

Implied 



SEP 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Mode: 

THE 65816 INSTRUCTION SET 183 

Set Status Bits 

SEP#N 

P-PVN 

The OR function operates on the status register (P) 
and the byte immediately following the opcode, and 
the result is stored in P. 

N V M X D I Z C 

lxlxlxlxlxlxlxlxl 

Immediate 



184 PROGRAMMING THE 65816 

STA 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Modes: 

Store Accumulator into Memory 

STAM 

M+-A 

The contents of the accumulator are stored at the 
memory operand. 

N V M X D I Z C 

I I I I I I I I I 
(no change) 

Absolute 
Absolute Long 
Direct 
Direct Indirect Indexed 
Direct Indirect Long Indexed 
Direct Indexed Indirect 
Direct Indexed with X 
Absolute Indexed with X 
Absolute Long Indexed with X 
Absolute Indexed with Y 
Direct Indirect 
Direct Indirect Long 
Stack Relative 
Stack Relative Indirect Indexed 



STP 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Mode: 

THE 65816 INSTRUCTION SET 185 

Stop the Clock 

STP 

Stop processor 

The processor and clock stop until a reset is done. 

N V M X D I Z C 

I I I I I I I I I 
(no change) 

Implied 



186 PROGRAMMING THE 65816 

STX 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Modes: 

Store Index Register X 

STXM 

The X index register is stored at the memory operand. 

N V M X D I Z C 

I I I I I I I I I 

Absolute 
Direct 

(no change) 

Direct Indexed with Y 



STY 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Modes: 

THE 65816 INSTRUCTION SET 187 

Store Index Register Y 

STY M 

M +-Y 

The Y index register is stored at the memory operand. 

N V M X D I Z C 

I I I I I I I I I 

Absolute 
Direct 

(no change) 

Direct Indexed with X 



188 PROGRAMMING THE 65816 

STZ 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Modes: 

Store Zero in Memory 

STZM 

Zero is stored at the memory operand. 

N V M X D I Z C 

I I I I I I I I I 

Absolute 
Direct 

(no change) 

Direct Indexed with X 
Absolute Indexed with X 



TAX 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Mode: 

THE 65816 INSTRUCTION SET 189 

Tran sf er Accumulator into X 

TAX 

The accumulator is transferred into the X index regis­
ter. The contents of A are not changed. 

N V M X D I Z C 

Ix I I I I I Ix I I 

Implied 



190 PROGRAMMING THE 65816 

TAY 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Mode: 

Trans( er Accumulator into Y 

TAY 

The accumulator is transferred into the Y index regis­
ter. The contents of A are not changed. 

N V M X D I Z C 

Ix I I I I I Ix I I 

Implied 



TCD 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Mode: 

THE 65816 INSTRUCTION SET 191 

Transfer Accumulator into Direct Register 

TCD 

D +-C 

The 16-bit accumulator (C) is transferred into the 
direct register. The contents of C are not changed. 

N V M X D I Z C 

Ix I I I I I Ix I I 

Implied 



192 PROGRAMMING THE 65816 

TCS 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Mode: 

Trans( er Accumulator into Stack Pointer 

TCS 

S +-C 

The 16-bit accumulator (Q is transferred into the stack 
pointer. The contents of C are not changed. This instruc­
tion changes the location of the stack in memory. 

N V M X D I Z C 

I I I I I I I I I 
(no change) 

Implied 



TDC 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Mode: 

THE 65816 INSTRUCTION SET 193 

Tran sf er Direct Register into Accumulator 

TDC 

C+-D 

The direct register is transferred into the 16-bit accu­
mulator (Q. The contents of Dare not changed. 

N V M X D I Z C 

Ix I I I I I Ix I I 

Implied 



194 PROGRAMMING THE 65816 

TRB 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Modes: 

Test and Reset Bits 

TRBM 

M-Ml\A 

The AND function operates on the complement of 
accumulator A and the memory operand, and the 
result is stored in the memory operand. Any bit set in 
A will be cleared in the memory operand. 

N V M X D I Z C 

I I I I I I Ix I I 

Absolute 
Direct 



TSB 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Modes: 

THE 65816 INSTRUCTION SET 195 

Test and Set Bits 

TSBM 

M +- MVA 

The OR function operates on the memory operand 
and accumulator A, and the result is stored in the 
memory operand. Any bit set in A will be set in the 
memory operand. 

N V M X D I Z C 

Absolute 
Direct 

Ix I I I 



196 PROGRAMMING THE 65816 

TSC 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Mode: 

Trans( er Stack Pointer into Accumulator 

TSC 

c-s 

The stack pointer is transferred into the 16-bit accu­
mulator (C). The contents of Sare not changed. 

N V M X D I Z C 

Ix I I I I I Ix I I 

Implied 



TSX 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Mode: 

THE 65816 INSTRUCTION SET 197 

Transfer Stack Pointer into Index Register X 

TSX 

x +- s 

The stack pointer is transferred into index register X. 
The contents of S are not changed. 

N V M X D I Z C 

Ix I I I I I Ix I I 

Implied 



198 PROGRAMMING THE 65816 

TXA 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Mode: 

Trans( er Index Register X into Accumulator 

TXA 

A +-X 

The X index register is transferred into accumulator A. 
The contents of X are not changed. 

N V M X D I Z C 

Ix I I I I I Ix I I 

Implied 



TXS 

Mnemonic: 

Function: 

Description: 

THE 65816 INSTRUCTION SET 199 

Tran sf er Index Register X 
into the Stack Pointer 

TXS 

s-x 

The X index register is transferred into the stack 
pointer. The contents of X are not changed. This 
instruction will change the location of the stack in 
memory. 

Status Register: N v M x D I z c 

Addressing 
Mode: Implied 

I I I I I I 
(no change) 



200 PROGRAMMING THE 65816 

TXY 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Mode: 

Trans( er Index Register X 
into Index Register Y 

TXY 

y +- x 

The X index register is transferred into the Y index 
register. The contents of X are not changed. 

N V M X D I Z C 

Ix I I I Ix I I 

Implied 



TYA 

Mnemonic: 

Function: 

Description: 

THE 65816 INSTRUCTION SET 20 I 

Trans( er Index Register Y into Accumulator 

TYA 

The Y index register is transferred into accumulator A. 
The contents of Y are not changed. 

Status Register: N v M x D z c 

Addressing 
Mode: 

Ix I I I I I 

Implied 

Ix I I 



202 PROGRAMMING THE 65816 

TYX 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Mode: 

Trans( er Index Register Y 
into Index Register X 

TYX 

x-v 

The Y index register is transferred into the X index 
register. The contents of Y are not changed. 

N V M X D I Z C 

Ix I I I I I Ix I I 

Implied 



WAI 

Mnemonic: 

Function: 

Description: 

THE 65816 INSTRUCTION SET 203 

Wait for Interrupt 

WAI 

READY+- 0 

The processor stops until an external interrupt occurs. 
You can use this feature to reduce interrupt latency by 
putting the WAI instruction at the beginning of the 
interrupt service routine and setting the interrupt dis­
able bit I. When an interrupt occurs, the instruction 
after the WAI will be executed. 

Status Register: N V M X D z c 

Addressing 
Mode: 

I I I I I I 
(no change) 

Implied 

I I I 



204 PROGRAMMING THE 65816 

XBA 

Mnemonic: 

Function: 

Description: 

Status Register: 

Addressing 
Mode: 

Exchange the B and A Accumulators 

XBA 

The A and B accumulators are exchanged. The M bit 
in the status register should be 1. The XBA instruction 
is used when 8-bit data is used and an extra register, 
B, is needed. 

N V M X D I Z C 

Ix I I I Ix I I 

Implied 



XCE 

Mnemonic: 

Function: 

Description: 

THE 65816 INSTRUCTION SET 205 

Exchange the Carry and Emulation Bits 

XCE 

The C and E bits in the status register P are exchanged. 
This instruction is used to change the 65816 operation 
between the native mode and the 6502 emulation 
mode. To set the 65816 into the native mode, execute 
the following instructions: 

CLC 
XCE 

To set the 65816 back into the emulation mode, exe­
cute the following instructions: 

SEC 
XCE 

Status Register: N V M X D I Z C 

I I I I I I I E I 
Addressing 
Mode: Implied 





5 

IN THIS CHAPTER, I will first discuss the general theory of addressing and 
examine the various techniques used for accessing data. I will then go on 
to examine the most important aspect of the 65816's architecture-the 
area where its special power is most apparent-the extensive 65816 
addressing capabilities. The most important of these are indexed, direct, 
and indirect addressing. 

The special registers and modes provided for indexed addressing make 
the 65816 an excellent machine for writing efficient routines to handle 
complex data structures. The 65816's relative addressing modes make it 
possible to write position-independent code (especially important in 
ROM-based applications)-a task that would be impossible on many other 
microprocessors. 

Although complex data-accessing methods are not necessary in the 
beginning stages of programming, it is crucial to understand the address­
ing modes to realize the full power of the 65816. Once you have mas­
tered these addressing techniques, it will then be a straightforward matter 
to write efficient data-handling routines. 

pOSSIBLE ADDRESSING MODES 

Addressing refers to the specification, within an instruction, of the location 
of the operand on which the instruction will operate. I begin by examin­
ing the six main addressing modes (shown in Figure 5.1). 



208 PROGRAMMING THE 65816 

7 0 

IMPLIED OPCODE :R i I 
IMMEDIATE OPCODE 

LITERAL 

I LITERAL I 
L---------.J 

ABSOLUTE (EXTENDED) OPCODE 

FULL 16-BIT 
- OR 24-BIT -

ADDRESS 

I I L _________ .J 

DIRECT OPCODE 

SHORT ADDRESS 

RELATIVE OPCODE 

DISPLACEMENT 

I DISPLACEMENT I 
L----------J 

INDEXED OPCODE 
AND 

INDIRECT : DISPLACEMENT I 
r---------, 
I OR ADDRESS I 
L _________ .J 

Figure S. I: Basic Addressing Modes 



ADDRESSING TECHNIQUES 209 

IMPLIED (INHERENT OR REGISTER) ADDRESSING 
Instructions that operate exclusively on registers normally use implied 
addressing (as illustrated in Figure 5.1 ). An implied instruction derives its 
name from the fact that it does not specifically contain the address of the 
operand on which it operates; instead, its opcode specifies one or more 
registers. Since internal registers are usually few in number (commonly 
eight), only a small number of bits are needed to specify a particular regis­
ter in the opcode. 

An example of an implied addressing instruction is: 

DEC A 

This instruction specifies "decrement the contents of A by 1." 

IMMEDIATE ADDRESSING 
In the immediate addressing mode, an 8- or 16-bit literal (a constant) fol­
lows the 8-bit opcode (see Figure 5.1 ). Since the microprocessor is 
equipped with 16-bit registers, it may be necessary to load 8- or 16-bit lit­
erals. An example of an immediate instruction is: 

ADC #$5 

The second word of this instruction contains the literal 5, which is added 
to accumulator A. 

ABSOLUTE (OR EXTENDED) ADDRESSING 
In absolute addressing, the 16-bit address of the operand follows the 
opcode. Absolute addressing, therefore, requires three-byte instructions. 
Here is an example using the absolute addressing mode: 

STA $1234 

This instruction specifies that the contents of the accumulator are to be stored 
at memory location 1234 hexadecimal. Absolute addressing is also called 
extended addressing, because a full 16-bit memory address is specified. 

A disadvantage of absolute addressing is that it requires a three-byte 
instruction. To improve the efficiency of the microprocessor, there may be 
another addressing mode available, direct addressing, which requires that 
only one byte be used for the address. 



210 PROGRAMMING THE 65816 

DIRECT ADDRESSING 
In direct addressing, the opcode is followed by an 8-bit address (see Figure 

5.1 ). The advantage of this approach is that it requires only two bytes, instead 

of three, for absolute addressing. A disadvantage is that on most micropro­

cessors it limits all addressing within this mode to addresses 0 to 255. (Note: 

The 65816 does not have this limitation.) When addresses 0 to 255 are used, 

this type of addressing is also known as short or zero-page addressing. 

RELATIVE ADDRESSING 
You use relative addressing with branch instructions. If the state of the sta­

tus flags satisfies the test made by the branch instruction, then the branch 

instruction loads the PC with a new address. The byte following the 
opcode, called the displacement, is added to the PC to form the new PC, 

to which the instruction branches. Figure 5.1 shows the structure of the 

relative addressing mode. 
Since the displacement is a positive or negative number, a relative 

branch instruction allows a branch forward of 127 bytes or backward of 

128 bytes (usually + 129 or - 126, since the PC will have been incre­

mented by 2). The branch instructions are used in program loops. 

Because most loops are short, relative branching with a one-byte displace­

ment is the most common. Relative branching usually results in signifi­

cantly improved performance for short routines. 
If you need a larger branch displacement, you can use the long branch 

instruction with a 16-bit displacement. This instruction is three bytes long 

(see Figure 5.1 ). The long branch can branch to any address in the mem­

ory because the displacement ranges from - 32768 to + 32767. Since 

long branch instructions take longer to execute than the simple branch 
instructions, you normally use them only when the shorter branch will 

not work. Relative addressing provides improved speed performance with 

branch instructions. If a program uses relative addressing, it can be easily 

moved to different areas of memory. In addition, if you do not use abso­

lute addresses, then you can relocate the program to other areas of mem­
ory. The jump instruction (JMP) allows the use of absolute addressing. 

Generally, you should avoid the absolute addressing mode in favor of rela­

tive addressing. 

INDEXED ADDRESSING 
You use indexed addressing to access, in succession, the elements of a 

block or table. This mode appears in examples given later in this chapter. 



ADDRESSING TECHNIQUES 211 

With indexed addressing, the instruction specifies both an index register 
and a base address. The contents of the register and base address are 
added to provide the final address. In this way, the address could be the 
beginning of a table in memory. The index register would then be used to 
efficiently access all the elements of a table successively. However, there 
must be a way to increment or decrement the index register. 

Pre-Indexing and Post-Indexing 
There are two modes of indexing: pre-indexing and post-indexing. Pre­
indexing is the usual indexing mode, in which the final address is the sum 
of a displacement or address, plus the contents of the index register. Fig­
ure 5.2 illustrates this approach (assuming an 8-bit displacement field and 
a 16-bit index register). 

On the other hand, post-indexing treats the contents of the displace­
ment field as the address of the actual displacement, rather than as the dis­
placement itself. In post-indexing, the final address is the sum of the 
contents of the index register, plus the contents of the memory word des­
ignated by the displacement field (see Figure 5.3). This feature, in fact, uses 
a combination of indirect addressing and pre-indexing. Let's now define 
indirect addressing. 

OPCODE 

DISPLACEMENT 

BASE 

I 
I 
I 
I 

J 
TABLE 

DISPLACEMENT I """"""""".,.,.,.,.,,.,i----' 
+ FINAL ADDRESS 

MEMORY 

Figure 5.2: Addressing (Pre-Indexing) 

INDEX REGISTER 

BASE 



212 PROGRAMMING THE 65816 

Indirect Addressing 
At times, two subroutines must exchange a large quantity of data stored in 

the memory. More generally, several programs or subroutines may need 

to access a common block of information. To preserve the generality of 

the program, you should not keep such a block at a fixed memory loca­

tion. In particular, the size of the block may grow or shrink dynamically; 

thus, it may have to reside in various areas of the memory, depending on 

its size. It would, therefore, be impractical to try to access this block using 

absolute addresses-that is, without rewriting the program every time. 

The solution to this problem, then, is to deposit the starting address of 

the block at a fixed memory location. Indirect addressing, therefore, nor­

mally uses an opcode (8 bits in the case of the 65816), followed by a 16-

bit address. This address is used to retrieve a 16-bit word from the 

memory. This is used as the address of the operand. Figure 5.4 illustrates 

OPCODE 

ADDRESS 

POINTER =BASE 

MEMORY 

POINTER 

MEMORY 

DATA 

FINAL 16-BIT 
ADDRESS 

Figure 5.3: Indirect Indexed Addressing (Post-Indexing) 

Y(index) 

N 



ADDRESSING TECHNIQUES 213 

the structure of an instruction using indirect addressing, where the two 

bytes at the specified address A 1 contain A2. A2 is then interpreted as the 

actual address of the data to be accessed. 
Indirect addressing is particularly useful any time pointers are used. Var­

ious areas of the program can then refer to these pointers to conveniently 

and elegantly access a word or block of data. Another form of indirect 

addressing, indexed indirect addressing, uses an index register, rather than 
a memory location, to contain the address of the desired data. 

Long Addressing 
Most 16-bit microprocessors can address more than 64K of memory, even 
though the PC and index registers are 16 bits long, by using long address­
ing. Additional address registers are provided for long addressing. These 
registers are concatenated with the index registers or PC to form a 24-bit 
or even a 32-bit address, as shown in Figure 5.5. An absolute long address 
would require extra bytes in an instruction. 

COMBINATIONS OF MODES 
You can combine addressing modes. In particular, in a completely general 
addressing scheme you can use many levels of indirection. For example, 

in Figure 5.4 the address A2 could again be interpreted as an indirect 
address, and so on. 

INSTRUCTION Mf.MORY 

OPCODE 

POSTBYTE Ai FINAL 

I 
--

INDIRECT ADDRESS (A2) 

"" ADDRESSA1 

A2 DATA ...__ 

Figure S.4: Indirect Addressing 



214 PROGRAMMING THE 65816 

You can also combine indexed addressing with indirect access. This 
allows efficient access to word n of a block of data, provided you know 
the location of the pointer to the starting address (see Figure 5.2). 

MODE SUMMARY 
You are now familiar with all the usual addressing modes that can be pro­
vided in a system. Most microprocessor systems, because of the limitation 
of the MPU (that it must be realized within a single chip), do not provide 
all possible modes, but only a small subset of them. The 65816 provides a 
good subset of possibilities. Let's examine them. 

658 / 6 ADDRESSING MODES 

The 65816 addressing modes are an important feature of the 65816 pro­
cessor. You can use them with most instructions to achieve great power 
and flexibility. The new addressing modes and additional instructions 
make the 65816 a more versatile machine than its predecessor, the 6502. 
To make good use of the 65816 processor and to write better programs, it 
is important to learn to use all the addressing modes. 

IMPLIED ADDRESSING (65816) 
On the 65816, implied addressing is used primarily by single-byte instruc­
tions that operate on internal registers. Many of these instructions require 

• 

23 16 

DATA BANK 
REGISTER 

23 16 

PROGRAM BANK 
REGISTER 

15 

15 

Figure S.S: Registers for Long Addresses 

0 

INDEX REGISTER 

0 

PROGRAM COUNTER 



ADDRESSING TECHNIQUES 215 

only two cycles to execute. Table 5.1 shows the instructions that use 
implied addressing. 

Some instructions, such as XBA, require more than two cycles to exe­
cute. Implied addressing is also called register addressing. 

IMMEDIATE ADDRESSING (65816) 

Table S.I: 

Since the 65816 has both single-length (8-bit) and double-length (16-bit) 
registers, it provides two types of immediate addressing, with both 8- and 
16-bit literals. Instructions are then either two or three bytes long. 

Here are examples of instructions using the immediate addressing mode: 

LOA 
LOX 
ADC 

#N 
#NN 
#NN 

(one byte) 
(two bytes) 
(two bytes) 

The number of bytes needed in the immediate addressing mode depends 
on the mode of the processor; 8 bits or 16 bits for the accumulator or 
index registers. The following instructions may use immediate addressing: 

• With 8- or 16-bit operands: ADC, AND, BIT, CMP, CPX, CPY, DEC, 
EOR, LDA, LDX, LDY, ORA, SBC 

• With 8-bit operands only: REP, SEP 

ASL INX STP TXY 
CLC INY TAX TYA 
CLO LSR TCD TYX 

Cll NOP TCS WAI 
CLV ROL TDC XBA 
DEC ROR TSC XCE 
DEX SEC TSX 
DEY SEO TXA 

INC SEI TXS 

Instructions Using Implied Addressing 



216 PROGRAMMING THE 65816 

ABSOLUTE (OR EXTENDED) ADDRESSING (65816) 
By definition, absolute addressing requires three or four bytes. The first 
byte is the opcode, and the next two are the 16-bit address specifying the 
memory location (the absolute address). If you use the absolute long 
mode, the instruction requires four bytes. The first byte is the opcode, and 
the next three are the 24-bit address. 

Absolute addressing always specifies a particular address, which does 
not change while the program executes. Input and output programs often 
use absolute addressing. Examples of instructions using absolute address­
ing are: 

LOA $10 
JMP $1234 

where the two hexadecimal numbers represent the 16-bit addresses of 
data or instructions. Instructions that can use the absolute addressing 
mode are: ADC, AND, ASL, BIT, CMP, CPX, CPY, DEC, EOR, INC, LOA, 
LOX, LOY, LSR, ORA, ROL, ROR, SBC, STA, STX, STY, STZ, TRB, and TSB. 

DIRECT ADDRESSING (65816) 
On most microprocessors where it is available, direct addressing 
addresses only the first 256 bytes of memory (page 0, which is addresses 0 
to 255). This is because only an 8-bit address is specified, allowing the 
instruction to use two bytes instead of three. On the 65816, you can 
address any byte in bank 0 of memory by using direct addressing and 
manipulating the direct register (D). An example of direct addressing is: 

ADC <$10 

The symbol < denotes direct addressing. 
When direct addressing is used, the byte immediately following the 

opcode is added to the D register to form the address of the operand. By 
changing the D register appropriately, any page in bank 0 of memory may 
be addressed. When the D register contains 0, the 65816 direct address­
ing mode operates in the same manner as the 6502 processor. If the low 
byte of the D register is not 0, an extra instruction cycle is needed. The 

following instructions use direct addressing: ADC, AND, ASL, BIT, CMP, 
CPX, CPY, DEC, EOR, INC, LOA, LOX, LOY, LSR, ORA, ROL, ROR, SBC, 
STA, STX, STY, STZ, TRB, and TSB. 



ADDRESSING TECHNIQUES 217 

RELATIVE ADDRESSING ( 65816) 
By definition, relative addressing requires two bytes. The first byte is the 
branch relative opcode; the second specifies the displacement and its sign. 
A long branch requires an extra byte for the displacement, making a total 
of three bytes. The instructions that use relative addressing are: BCC, BCS, 
BEQ, BMI, BNE, BPL, BRA, BRL, BVC, and BVS. 

Examine these instructions with caution when you are concerned about 
timing. Whether a test succeeds or fails (whether there is not or there is a 
branch), all short branch instructions require two or three cycles, respec­
tively. If you take a branch and cross a page boundary, the instruction will 
execute in four cycles. 

Exercise caution when you are computing the duration of execution of 
a program segment. If you are not sure the branch will succeed, you must 
remember that sometimes the instruction will require two cycles (if the 
condition is not met) and sometimes three or four cycles (if the condition is 
met). An average value is often used for the duration of a branch. 

This timing problem does not apply to the branch always (BRA) and 
branch long (BRL) instructions, which do not test any condition. 

(Note: To differentiate the absolute jump instruction from the relative 
branch, the jump instruction is labeled JMP.) 

There is another type of relative addressing in the 65816 that uses the 
stack pointer (S). The stack relative addressing mode adds the byte imme­
diately following the opcode to the stack pointer to form the address of 
the operand. The unsigned value of the offset byte is used, so only values 
from 0 to 255 above the value of S can be addressed. The address must 
be in bank 0. An example of stack relative addressing is: 

ADC $50,S 

The instructions that can use stack relative addressing are: ADC, AND, 
CMP, EOR, LOA, ORA, SBC, and STA. 

INDEXED ADDRESSING (65816) 
The indexed addressing mode is very powerful on the 65816 micropro­
cessor. In all indexed addressing, one of the index registers (X or Y) is used 
to calculate the effective address of the data used by the instruction. There 
are two different types of indexed addressing: direct indexed and absolute 
indexed. 



218 PROGRAMMING THE 65816 

Direct Indexed 
In the direct indexed mode, the byte following the opcode is used as an offset 
and is added to the direct register, and then the specified index register is 
added to this sum to form the address of the operand. The operand must be 
in bank 0. Examples of direct indexed addressing are: 

ADC $0,X 
LOX $50,Y 

Instructions that use the direct indexed addressing are: 

• With X: ADC, AND, ASL, BIT, CMP, DEC, EOR, INC, LDA, LOY, LSR, 
ORA, ROL, ROR, SBC, STA, STY, STZ 

• With Y: LDX, STX 

Absolute Indexed 
The absolute indexed mode adds the two bytes following the opcode to a 

specified index register to form the low 16 bits of the address. The data 

bank register contains the high 8 bits of the address. The low-order 

address byte immediately follows the opcode. Examples of absolute 
indexed addressing are: 

ADC $100,X 
AND $1234,Y 

Instructions that use the absolute indexed mode are: 

• With X: ADC, AND, ASL, BIT, CMP, DEC, EOR, INC, LDA, LOY, LSR, 
ORA, ROL, ROR, SBC, STA, STZ 

• With Y: ADC, AND, CMP, EOR, LDA, LDX, ORA, SBC, STA 

The absolute long indexed mode may be used only with index register X. 

With this mode, the 24-bit address is stored after the opcode and is added 
to the X index register to form the effective address of the operand. An 

example of absolute long indexed addressing is: 

CMP $FF1234,X 

Instructions that use the absolute long indexed mode are: ADC, AND, 
CMP, EOR, LDA, ORA, SBC, and STA. 



ADDRESSING TECHNIQUES 219 

INDIRECT ADDRESSING (65816) 
The indirect addressing modes in the 65816 use the bytes following the 
opcode as a pointer to the address of the opcode. There are two types of 
indirect addressing-absolute and direct. 

Absolute Indirect 
The absolute indirect address mode uses the two bytes following the opcode 
to form the address that points to the operand used by the instruction. Only 
the JMP and JML instructions use this mode, so the operand fetched is always 
the address to jump to. An example of this instruction is: 

JMP ($1234) 

The pointer always points to bank 0 because the address is two bytes 
long. When you use the jump long (JML) instruction, the program bank 
register is loaded from the location addressed by the pointer plus two. 

Direct Indirect 
The direct indirect mode adds the byte immediately following the opcode 
to the direct register to form a pointer to the low-order 16 bits of the 
address of the operand. The data bank register contains the high-order 8 
bits. The 16-bit low-order address pointed to by the direct register must be 
in bank 0. The direct indirect mode is indicated by parentheses around 
the offset byte, as indicated in this example: 

$123456 
$000120 
$AAFEEE 

ADC ($20) 
$FEEE 
$02 

Assume that in the above example, D= $0100 and DBR= $M. The value 
$20 will be added to D to fetch the address $FEEE, which is concatenated 
with $M to form the address of the operand, $02. 

The direct indirect long addressing mode uses the pointer formed by the 
sum of the offset byte and direct register to fetch all three bytes of the address 
of the operand. Here is an example of the direct indirect long mode: 

$123456 
$000120 
$AAFEEE 

ADC [$20] 
$AAFEEE 
$02 

The square brackets [] are used to indicate long addressing. 
The following instructions may be used with both addressing modes: 

ADC, AND, CMP, EOR, LDA, ORA, SBC, and STA. 



220 PROGRAMMING THE 65816 

COMBINATIONS OF ADDRESSING MODES 
The 65816 has five combinations of the direct, indexed, and indirect 
modes. These modes provide flexibility for passing parameters and arrays 
of data from one part of the program to another. 

Direct Indirect Indexed 
The direct indirect indexed mode is also referred to as indirect, Y. The sec­
ond byte of the instruction is added to the direct register. The 16-bit con­
tents of the location pointed to by the direct register are combined with 
the data bank register to form the base address. (fhe location pointed to 
by the direct register must be in bank 0.) The Y index register is added to 
the base to form the effective address of the operand. In the following 
example 

$123456 
$000120 
$AAFFEE 

ADC 
$FFOO 
$02 

($20),Y 

assume that D = $0100, DBR = $M, and Y = $00EE. The value 2 is added 
to the accumulator. 

The direct indirect long indexed mode is similar to the direct indirect 
indexed mode, except that the sum of the direct register and offset byte 
point to a 24-bit address, which is added to Y to form the effective address 
of the operand. The direct register only points to a location in bank 0. The 
data bank register is not used, as shown in the following example: 

$123456 
$000120 
$BBFFEE 

ADC ($20],Y 
$BBFFOO 
$02 

Assume that 0=$0100, DBR=$M, and Y=$00EE. The value 2 is added 
to the accumulator. The square brackets [] are used to indicate long 
addressing. 

You may use the following instructions with both modes in direct indirect 
indexed addressing: ADC, AND, CMP, EOR, LOA, ORA, SBC, and STA. 

Direct Indexed Indirect 
The direct indexed indirect mode is often referred to as indirect, X. The 
second byte of the instruction is added to the sum of the direct register 
and the X index register. This sum points to a 16-bit address in bank 0. The 
16-bit address is combined with the data bank register to form the 



ADDRESSING TECHNIQUES 221 

effective address of the operand. The following example adds the value 
$02 to the accumulator: 

$123456 
$005120 
$AAFFOO 

ADC 
$FFOO 
$02 

($20,X) 

Assume that D= $0100, DBR= $M, and X= $5000. You may use the fol­
lowing instructions with the direct indexed indirect mode: ADC, AND, 
CMP, EOR, LDA, ORA, SBC, and STA. 

Absolute Indexed Indirect 
The absolute indexed indirect mode adds the second and third bytes of 
the instruction to the X index register to form a 16-bit pointer into bank 0. 
The pointer is loaded into the PC. The program bank register is not 
affected. This addressing mode is used with the JMP and JSR instructions, 
and it allows a single jump or jump-to-subroutine instruction to jump to 
different locations, depending on the value of the X. 

Stack Relative Indirect Indexed 
The stack relative indirect indexed mode uses the second byte of the 
instruction to add to the stack pointer, forming a pointer to the low-order 
16-bit base address in bank 0. The data bank register contains the high­
order 8 bits of the base address. The effective address of the operand is 
the sum of the 24-bit base address and the Y index register. Here is an 
example: 

$123456 
$000120 
$AAFF22 

ADC 
$FFOO 
$02 

($20,S),Y 

Assume that S=$0100, DBR=$M, and Y=$22. The value 2 is added to 
the accumulator. This addressing mode is used with the following instruc­
tions: ADC, AND, CMP, EOR, LDA, ORA, SBC, and STA. 

ADDRESSING MODE NOTATION 
When you are developing a program using assembly language, you must 
have a notation to indicate which addressing mode is to be used with an 
instruction. Table 5.2 shows the notation recommended by the manufac­
turer of the 65816. 



222 PROGRAMMING THE 65816 

LJSING THE 65816 ADDRESSING MODES 
This section contains short program examples illustrating the use of sev­
eral addressing modes. These programs are often used as parts of larger 
programs. 

USE OF INDEXING FOR SEQUENTIAL BLOCK ACCESS 
Indexing is used primarily for addressing successive locations within a table. It 
is sometimes desirable to limit the table size to 256 so that you can use the 

ADDRESSING MODE OPERAND FORMAT 

IMPLIED none needed 
IMMEDIATE #Nor #NN 
ABSOLUTE NN 
ABSOLUTE LONG NNN 
DIRECT N 
DIRECT INDIRECT INDEXED (N),Y 
DIRECT INDIRECT LONG INDEXED [N],Y 
DIRECT INDEXED INDIRECT (N,X) 
DIRECT INDEXED WITH X N,X 
DIRECT INDEXED WITH Y N,Y 
ABSOLUTE INDEXED WITH X NN,X 
ABSOLUTE INDEXED WITH Y NN,Y 
ABSOLUTE LONG INDEXED WITH X NNN,X 
ABSOLUTE INDIRECT (NN) 
DIRECT INDIRECT (N) 
DIRECT INDIRECT LONG [NJ 
ABSOLUTE INDEXED INDIRECT (NN,X) 
STACK RELATIVE N,S 
STACK RELATIVE INDIRECT INDEXED (N,S),Y 

N 8-bit value 

NN 16-bit value 

NNN 24-bit value 

Table 5.2: Addressing Mode Notation 



ADDRESSING TECHNIQUES 223 

8-bit index register mcxie, which is faster than the 16-bit mcxie. 

Let's now search a table of 100 elements for the * character. The start­
ing address for this table is called BASE. The table has only 100 elements. 

Figure 5.6 shows the algorithm. Here is the program: 

SEARCH 
TEST 

LOX 
LOA 
CMP 
BEQ 
INX 
CPX 
BNE 

NOTFOUND ... 
FOUND 

#0 
BASE,X 
#'* 
FOUND 

#100 
TEST 

This program uses the absolute indexed mode. The same program using 

the direct indexed mode is shown below. Note that the direct register is 
loaded through the accumulator. 

SEARCH LOA #BASE 
TCD 
LOX #0 

TEST LOA o,x 
CMP #'* 
BEQ FOUND 
INX 
CPX #100 
BNE TEST 

NOTFOUND ... 
FOUND 

When the direct indexed mode is used, the table must be in bank 0. 

A BLOCK TRANSFER ROUTINE 
In the following program, COUNT is the number of elements in the block 
to be moved. The number is assumed to be less than 65,536. FROM is the 

base address of the block, and TO is the base of the memory area where 

it should be moved. The algorithm is quite simple: you move a byte at a 
time, and keep track of the byte you are moving by decrementing X. Here 

is the program: 

BLKMOV LOX 
NEXT LOA 

#COUNT 
FROM,X 



224 PROGRAMMING THE 65816 

STA TO,X 
DEX 
BNE NEXT 

This program will move words until X equals zero; therefore, the program 
will not transfer the byte at FROM. The tables TO and FROM must be just 
above where the addresses point to. This block transfer program is 
designed to work with bytes. To use 16-bit words, the X register must be 
decremented twice and the processor M and X bits in the status register 
must be set to 0. 

BLOCK TRANSFER INSTRUCTIONS 
The block move program was written to illustrate the use of the X index 
register, but you would generally not use the program on the 65816 
because the block move instructions are much more efficient. The block 
move can move up to 65,536 bytes from one part of the 16-megabyte 

INITIALIZE 
TO FIRST ELEMENT 

READ ELEMENT 
AND POINT TO NEXT 

YES 

NOT FOUND 

Figure S.6: Character Search Flowchart 

STAR 
FOUND 



ADDRESSING TECHNIQUES 225 

memory space to any other part. The block move uses the X index regis­

ter to store the low 16 bits of the source address, and it uses the Y index 

register to store the low 16 bits of the destination address. The second 

byte of the instruction contains the bank address for the destination 

address, and the third byte of the instruction contains the bank address 

for the source bank. The accumulator contains the number of bytes to 

transfer minus 1. Figure 5.6 shows the memory and register usage for the 

block move positive (MVP) instruction. Here is an example of block move 

positive: 

REP #$30 
LOA #511 
LOX #SOURCE 
LOY #DEST 
MVP #$0201 

The first instruction, REP #$30, puts all registers into the 16-bit mode. The 

byte count in the accumulator shows that 512 bytes will be moved. The 

source data bank is 1, and the destination data bank is 2. The accumulator 

will be decremented each time a byte is moved. The X and Y registers will 

also be decremented each time data is moved. This means data will move 

first from the highest locations in the source to the highest locations in the 

destination, as illustrated in Figure 5.7. 
The block move negative (MVN) instruction is the same as the block 

move positive, except the index registers are incremented after each byte 

is transferred. The data bank register will always contain the destination 

bank address when either instruction is finished. 

ADDING TWO BLOCKS 

I will now develop a program that adds, element-by-element, two blocks 

that start at addresses BLKl and BLK2, respectively, and that have an equal 

number of 16-bit elements (COUNn. Here is the program: 

BLKADD LOX #0 
LOOP CLC 
LOA BLK1,X 
ADC BLK2,X 
STA BLK2,X 
INX 
INX 
CPX #COUNT*2 
BNE LOOP 



226 PROGRAMMING THE 65816 

I will now implement the same program using the direct indirect 
indexed mode. This mode allows the addresses of the blocks to be stored 
in bank 0 and to be referenced with the direct register. The addresses are 
stored in bank 0 at PTR1 and PTR2. Here is the program: 

BLKADD LOY #0 
NEXT CLC 

LOA (PTR1),Y 
ADC (PTR2),Y 
STA (PTR2),Y 
INY 

MVP 
()()()()()() 

r----------------------1 DESTINATION 
BANK 

..-------------------tSOURCEBANK 
23 16 15 x 0 

SOURCE SOURCE ADDRESS 
BANK 

23 16 15 y 0 

DESTINATION 
DESTINATION ADDRESS BANK 

15 A 0 

BYTE COUNT - 1 

FFFFFF 

Figure S.1: Registers and Memory for Block Move Positive 



ADDRESSING TECHNIQUES 227 

INY 
CPY #COUNT*2 
BNE NEXT 

In this program, you do not need to know the absolute location of BLKl 

and BLK2. The addresses could have been written by another part of the 

program before the block add was executed. 

SUMMARY 

I have now discussed addressing modes and analyzed those available on the 

65816. You have seen that the 65816 offers many possible addressing mech­

anisms. To program the 65816 efficiently, you must understand these 

mechanisms. They will be used throughout the remainder of this book. 

EXE.RC/SES 

5-1: Use the block addition program to perform a 32-bit addition. 

5-2: Use the block addition program to perform a 64-bit addition. 

5-3: Modify the block addition program so that the result is stored in a sep­

arate block starting at address BLK3. 

5-4: Modify the block addition program to perform a subtraction rather 

than an addition. 

5-5: Write a program to add the first 10 bytes of a table stored at location 

BASE. The result will have 16 bits. (This is a checksum computation.) 

5-6: Can you solve the same problem in Exercise 5-5 without using the 
indexing mode? 

5-7: Reverse the order of the 10 bytes of this table. Store the result of the 

addition at address REVER. 

5-8: Search the same table for its largest element. Store it at memory 

address LARGE. 



INPUT/OUTPUT TECHNIQUES 



6 

SO FAR IN THIS BOOK, you have seen how to exchange information 
between the memory and the various registers of the processor; you have 
learned how to manage registers; and you have learned how to use a 
variety of instructions to manipulate data. I will now examine input/output 
techniques and show you how to communicate with the external world. 

The principal advantage of the 65816 architecture in this important area 
is its powerful interrupt structure, which provides, in addition to a regular 
interrupt mode, a nonmaskable interrupt mode. Also important in the use 
of these interrupt modes is the 65816's unique WAI instruction, which I 
will also explore in this chapter. 

Input is the transfer of data from an outside peripheral (keyboard, disk, 
or physical sensor) to internal computer storage. Output is the transfer of 
data from within the microprocessor or the memory to an external 
device, such as a printer, CRT, disk, or actual sensors and relays. In this 
chapter, you will learn to perform the input/output operations required in 
most computer applications. You will also learn to manage several input/ 
output devices simultaneously, and finally, I will discuss the subject of poll­
ing versus interrupts. 

THE 65816 INPUT/OUTPUT INSTRUCTIONS 

For input or output on the 65816, you can use any instruction that trans­
fers data to or from memory. Input/output interfacing on the 65816 is 
called memory-mapped interfacing because input/output devices are inter­
faced to the 65816 in the same way that memory is interfaced. You can 
use any addressing mode for input or output; however, absolute address­
ing is commonly used, because the addresses of input/output devices 
rarely change once a system has been built. 



230 PROGRAMMING THE 65816 

GENERATING A SIGNAL 
To generate a signal, the computer must turn an output device off or on. 
To do this, you must change an electrical voltage level in the device from 
a logical 0 to a logical 1, or from 1 to 0. For example, assume that an 
external relay is connected to bit 0 of a register called OUT1. To turn the 
relay on, you simply write 1 in the appropriate bit position of the register. 
I assume here that OUT1 represents the address of the device output reg­
ister in the system. Here is a program that will turn the relay on: 

TURNON LOA 
STA 

#%00000001 
OUT1 

LOAD PATTERN INTO A 
OUTPUT IT TO DEVICE 

STA is the output instruction. The % symbol indicates a binary number. 
In this example, I have assumed that the states of the other seven bits of 

the register OUT1 are irrelevant. However, this is often not the case, as 
these bits might be connected to other relays. You can improve this simple 
program by turning the relay on without changing the state of any other 
bit in the register. Assume that you can read and write the contents of this 
register. The improved program is: 

TURNON LOA 
ORA 
STA 

OUT1 
#%00000001 
OUT1 

READ CONTENTS OF OUT1 
FORCE BIT 0 TO 1 IN A 

This program first reads the contents of OUT1, then performs an 
inclusive-OR on its contents. It changes bit position 0 to 1, and leaves the 
rest of the register intact (see Figure 6.1 ). 

BEFORE AFTER 

RELAY RELAY 

OFF ON 

Figure 6.1: Turning on a Relay 



INPUT /OUTPUT TECHNIQUES 231 

PULSES 
You can generate a pulse in the same way that you changed the voltage 
level. You first turn an output bit on, then turn it off. This results in a pulse, 
as illustrated in Figure 6.2. In this example, however, you must solve an 
additional problem: you need to generate the pulse for a specified length 
of time. Thus, you must generate a computed delay. 

DELAY GENERATION AND MEASUREMENT 
You can generate a delay by using both software and hardware methods. I 
will first generate one using software; then I will generate one using a 
hardware counter, called a programmable interval timer (PIT). 

Programmed delays are achieved by counting. A counter register is first 
loaded with a value, then decremented. The program loops on itself and 
continues decrementing until the counter reaches the value 0. The total 

CPU OUTPUT PORT 
REGISTER 

SIGNAL 

...._ NUSEC-+-

____ ...,. __ _.. 
'----0 

THE PROGRAM: 
SELECT OUTPUT PORT 
LOAD OUTPUT REGISTER WITH PATIERN 
WAIT (LOOP FOR N USEC) 
LOAD OUTPUT PORT WITH ZERO 
RETURN 

Figure 6.2: A Programmed Pulse 

0.-1 1 ....... 0 



232 PROGRAMMING THE 65816 

length of time used by this process implements the required delay. As an 
example, let's generate a delay of 27 clock cycles: 

DELAY 
NEXT 

LOA 
DEC 
BNE 

#5 
A 
NEXT 

A IS COUNTER 
DECREMENT 
LOOP TIL ZERO 

The first instruction loads A with the value 5, and the next instruction 
decrements A. The last instruction causes a branch to NEXT, as long as A 
does not decrement to 0. When A finally decrements to 0, the program 
exits from this loop and executes whatever instruction follows. The logic 
of the program is simple and appears in the flowchart in Figure 6.3. 

Let's now compute the effective delay that the program will implement. 
To do this, use Appendix E to look up the number of cycles required by 
each instruction. Appendix E shows that LDA in the immediate mode 
requires two clock cycles. If the processor is in the 16-bit accumulator 
mode, three cycles are required. DEC also requires two cycles, and finally, 
BNE uses three cycles. The timing is, therefore, two cycles for the first 
instruction, plus five for the next two, multiplied by the number of times 
the loop is executed. 

Delay = 2 + (5 x 5) = 27 cycles 

COUNTER = VALUE 

DECREMENT COUNTER 

NO 

OUT 

Figure 6.3: Basic Delay Flowchart 



INPUT/OUTPUT TECHNIQUES 233 

Assuming a 0.5 microsecond clock, the programmed delay will be 13.5 
microseconds. (Note: The delay loop just described is used by most input/ 
output programs. Be sure you understand it.) 

To implement a longer delay, you simply add extra instructions in the 
program between the instructions DEC and BNE. The simplest way to do 
this is to add several NOP instructions. (The NOP instruction does nothing 
for two cycles.) 

LONGER DELAYS 
To generate longer delays using software, you can use a wider counter. 
For example, you can use the 16-bit mode to hold a 16-bit count. To simp­
lify, assume that the lower count is 0. You load the lower byte with 0 (the 
maximum count), and it will go through a decrementation loop. When it 
is decremented to 0, the upper byte of the counter is decremented by 1. 
When the upper byte is decremented to 0, the program terminates. If the 
delay generation requires more precision, the lower count can have a 
non-null value. In that case, you would write the program as explained 
and add the three-line delay generation program described above. 

Here is a 32-bit delay program: 

DEL32 LOA #COUNTH COUNTER HIGH (16 BITS) 
STA COUNTR 

DEL16 LOA #COUNTL COUNTER LOW (16 BITS) 
LOOP DEC A DECREMENT IT 

BNE LOOP LOOP UNTIL ZERO 
DEC COUNTR DECREMENT HIGH COUNTER 
BNE DEL16 REPEAT UNTIL ZERO 

Naturally, you could generate still longer delays by using more than two 
words. Actually, this example is analogous to the way an odometer works 
on a car. When the rightmost wheel goes from 9 to 0, the next wheel to 
the left is incremented by 1. This is the general principle when you are 
counting with multiple discrete units. 

The main disadvantage of this method, however, is that when the com­
puter is counting delays, the microprocessor does nothing else for hun­
dreds of milliseconds or even seconds. If the computer has nothing else to 
do, then this is acceptable. In general, though, the microcomputer should 
be available for other tasks. Therefore, long delays are normally not 
implemented by software. In fact, even short delays may be objectionable 
in a system, if the system is to provide guaranteed response time in certain 
situations. (In such situations, you must use hardware delays.) Another 



234 PROGRAMMING THE 65816 

disadvantage of the software delay is that if the program is interrupted, 

timing accuracy may be lost. 

HARDWARE DELAYS 
Hardware delays are implemented by using a programmable interval 

timer, or timer for short. When you use a programmable interval timer, a 

register of the timer is loaded with a value. The timer automatically decre­

ments the counter periodically. The programmer can usually adjust or 

select the amount of time between decrements. When the timer has 

decremented to 0, it normally sends an interrupt to the microprocessor. It 

may also set a status bit, which the computer can periodically sense. (I dis­

cuss interrupts later in this chapter.) 
Other timer operating modes may include starting from 0 and counting 

the duration of the signal or the number of pulses received. When it is 

functioning as an interval timer, the timer is said to operate in a one-shot 

mode. When counting pulses, the timer is said to operate in a pulse 

counting mode. Some timer devices may even include multiple registers 

and several optional facilities that the programmer can select. 

SENSING PULSES 
The problem with sensing pulses is the reverse of the problem with gen­

erating pulses, and it includes one more difficulty: an output pulse is 

generated under program control, whereas an input pulse occurs asyn­

chronously with the program. You can use two methods to detect a pulse: 

polling and interrupts. 
Using the polling technique, the program continuously reads the value 

of a given input register and tests a bit position, perhaps bit 0. Assume that 

bit 0 was originally 0. (Thus, when a pulse is received, this bit takes 

the value 1.) The program continuously monitors bit 0 until it takes the 

value 1. When a one is found, the pulse has been detected. Here is a pro­

gram that does this: 

POLL LOA 
BIT 
BEQ 

INPUT 
#%00000001 
POLL 

READ INPUT REGISTER 
TEST FOR 0 
KEEP POLLING IF ZERO 

Conversely, assume that the input line is normally 1, and you want to 

detect a zero. This is the usual case for detecting a start bit, when 



INPUT/OUTPUT TECHNIQUES 235 

monitoring a line connected to a Teletype. Here is the program: 

POLL 

START 

LOA 
BIT 
BNE 

INPUT READ INPUT REGISTER 
#%0000001 SET Z BIT 
POLL TEST IS REVERSED 

MONITORING THE DURATION 
You monitor the duration of a pulse in the same way that you compute 
the duration of an output pulse. You may use either a hardware or soft­
ware technique. When you monitor a pulse by using software, a counter 
is regularly incremented by 1, then the presence of the pulse is verified. If 
the pulse is still present, the program loops upon itself. If the pulse disap­
pears, the count contained in the counter register is used to compute the 
effective duration of the pulse. Here is a program that monitors pulse 
duration: 

DURTN LOX #0 CLEAR COUNTER 
AGAIN LOA INPUT READ INPUT 

BIT #%00000001 MONITOR BIT 0 
BEQ AGAIN WAIT FOR A 1 

LONGER INX INCREMENT COUNTER 
LOA INPUT 
BIT #%00000001 CHECK BIT 0 
BNE LONGER WAIT FOR AO 

Naturally, you assume that the maximum duration of the pulse will not 
cause register X to overflow. However, if X does overflow, you will have 
to change the program to take that into account (or there will be a pro­
gramming error!). 

Since you now know how to sense and generate pulses, I will show you 
how to capture and transfer large amounts of data. You can then apply 
this knowledge to actual input/output devices. 

pARALLEL BYTE TRANSFER 

Assume here that eight bits of transfer data are available in parallel at 
address INPUT (see Figure 6.4). Also assume that the status information is 
contained in bit 7 of address STATUS. The microprocessor must read the 
data byte at this location whenever a status byte indicates that it is valid. 



236 PROGRAMMING THE 65816 

I will now write a program that reads and automatically saves each byte 

of data as it comes in. For simplicity, assume that the number of bytes to 

be read is known in advance and contained in location COUNT. But if this 

information is not available, you need to test for a break character, such as 

a rubout, or perhaps the * character. You have learned how to do this 

already. 
The flowchart for this example appears in Figure 6.5. You test the status 

information until bit 7 becomes 1, indicating that a byte is ready. When 

the byte is ready, you read it and save it at an appropriate memory loca­

tion. You then decrement the counter and test whether it has decre­

mented to 0. If so, the task is completed; if not, you read the next byte. 

Here is a simple program that implements this algorithm: 

PARAL 
WATCH 

LOX 
LOA 

COUNT 

INPUT 

7 

COUNT 
STATUS 

Figure 6.4: Memory for Parallel Byte Transfer 

READ COUNT INTO X 
LOOK FOR DATAREADY TRUE 

1/0 DEVICE 

0 



BPL 
LOA 
PHA 
DEX 
BNE 

WATCH 
INPUT 

WATCH 

INPUT /OUTPUT TECHNIQUES 237 

LOOP TIL READY 
READ DATA 
SAVE DATA ON STACK 
DECREMENT COUNT 
REPEAT UNTIL ZERO 

Assume here that the data ready flag is automatically cleared when STA­
TUS is read. This is usually the case on a device controller. 

The first instruction initializes the counter register X: 

PARAL LOX COUNT 

The next instructions read the status information and cause a loop to 
occur when bit 7 of the status register is 0. The LOA instruction sets the 

NO 

POLLING OR 
SERVICE REQUEST 

READ COUNT 

TRANSFER WORD 

DECREMENT 
COUNTER 

OUT 

Figure 6.5: Flowchart for Parallel Byte Transfer 

NO 



238 PROGRAMMING THE 65816 

status bits. Bit 7 causes the N bit to be set. The M bit in the status register 

must be 0 so that the accumulator will be in the 8-bit mode. 

LOA STATUS 
BPL WATCH 

When BPL fails, the data is valid and you can read it: 

LOA INPUT 

The byte has now been read from address INPUT and must be saved. 

Assuming that a sufficient stack area is available, you can use the instruc­

tion 

PHA 

which saves A on the stack. If the stack is full, or if the number of bytes to 
be transferred is large, you cannot push them on the stack, and you will 

have to transfer them to a designated memory area, using, for example, 
an index register. 

The byte of data has now been read and saved. You simply decrement 
the byte counter and test whether you are finished: 

DEX 
BNE WATCH 

You keep looping until the counter eventually decrements to 0. 
This nine-instruction program, called a benchmark program, is designed 

to test a given processor for a specific operation. For example, you can 

compute the maximum transfer speed of the parallel transfer program-a 

program designed for maximum speed and efficiency. Assume that 

COUNT is contained in memory. Now examine the duration of each 

instruction (these figures are also given in Appendix E): 

PARAL LOX COUNT 4 or 5 
WATCH LOA STATUS 4 

BPL WATCH 3 
LOA INPUT 4 
PHA 3 
DEX 2 
BNE WATCH 3 

You can obtain the minimum execution time by assuming the data is 

ready every time you sample STATUS. In other words, if you assume the 
BPL will fail every time, the length of time necessary to transfer a block is 

then: 

4 + [(4 + 3 + 4 + 3 + 2 + 3) x couNn 



INPUT/OUTPUT TECHNIQUES 239 

If you neglect the first 4 cycles necessary to initialize the counter regis­
ter, the time used to transfer one byte is 19 clock cycles, which is 9.5 
microseconds with a 2 MHz clock. The maximum data transfer rate is: 

= 1 OSK per second 

You have now learned to perform high-speed parallel transfers. Let's 
examine a more complex case. 

8 IT SERIAL TRANSFER 

A serial input is one in which the bits of information (zeros or ones) come 
in successively on a line. These bits may come in at regular intervals, 
called synchronous transmission, or they may come at random intervals as 
bursts of data, called asynchronous transmission. I will now develop a pro­
gram that works in both cases. 

The principle of the capture of sequential data is simple. You watch an 
input line, which you assume to be line 0. When a bit of data is detected 
on this line, you read the bit in and shift it into a holding register. When 
you have assembled eight bits, you preserve the byte of data in the mem­
ory and assemble the next one. 

To simplify this example, assume that you know the number of bytes to 
be received. Otherwise, you might have to watch for a special break char­
acter and stop the bit serial transfer at that point. Figure 6.6 shows the 
flowchart for this program. Here is the program: 

SERIAL STZ 
LOX 

LOOP LOA 
BPL 
LSR 
ROL 
BCC 
LOA 
PHA 
LOA 
STA 
DEX 
BNE 

WORD CLEAR INPUT WORD 
#COUNT PUT BYTE COUNT INTO X 
INPUT READ PORT 
LOOP WAIT FOR BIT 7 = 1 
A SHIFT DATA BIT INTO CARRY 
WORD SAVE CARRY IN WORD 
LOOP CONTINUE UNTIL 8 BITS IN 
WORD PUT WORD IN A 

SAVE WORD ON STACK 
#$01 RESET MARKER BIT 
WORD AND STORE IN WORD 

DECREMENT BYTE COUNTER 
LOOP ASSEMBLE NEXT WORD 



240 PROGRAMMING THE 65816 

POLLING OR 
SERVICE REQUEST 

READ WORD 
COUNT 

STORE BIT 
INCREMENT 
COUNTER 

RESET BIT 
COUNTER 

DECREMENT 
WORD COUNT 

DONE 

Figure 6.6: Flowchart for Bit Serial Transfer 

NO 

NO 

NO 



INPUT /OUTPUT TECHNIQUES 241 

I have designed this program for efficiency. It uses new techniques that I 
will explain later in this chapter (see Figure 6.7). The conventions are the 
following: The index register Xis assumed to contain a count of the num­
ber of bytes to be transferred. The memory location WORD is used to 
assemble eight consecutive bits coming in. The address INPUT refers to 
an input register. Bit position 7 of this register is assumed to be a status flag 
or a clock bit. (When it is 0, the data is invalid; when it is 1, the data is 
valid.) Assume that the data itself appears in bit position 0 of this same 
address. (In many instances, the status information appears on a different 
register than the data register. Since this is in the same address, it should 
be a simple task, then, to modify this program accordingly.) In addition, 
assume that the first bit of data to be received by this program is guaran­
teed to be a one. This 1 indicates that the real data follows. However, if 
this is not the case, as you will later see, there is an obvious modification 
to correct this problem. 

A 

The program corresponds to the flowchart in Figure 6.6. The first few 
lines of the program implement a waiting loop, which tests whether a bit 

© 

COUNTR 

7 

I 
10 
I 

WORD 

0 

Figure 6.1: Registers for Serial-to-Parallel 



242 PROGRAMMING THE 65816 

is ready. To determine whether a bit is ready, you first read the input regis­

ter, then test the negative bit (N). As long as this bit is 0, the instruction 

BPL succeeds, and the program branches back to the loop. Whenever the 

status (or clock) bit becomes true (1), then BPL fails and the next instruc­

tion is executed. This initial sequence of instructions corresponds to arrow 

1 in Figure 6.7. 
At this point, A contains a one in bit position 7, and the actual data bit is 

in bit position 0. The first data bit to arrive will be a one. However, the 

following bits may be either 0 or 1. To preserve the data bit that has been 

collected in position 0, the instruction 

LSR A 

shifts the contents of A to the right by one position. This causes the right­

most bit of A, the data bit, to fall into the carry bit. You now preserve 

this data bit into WORD (this process is illustrated by arrows 2 and 3 in 

Figure 6.7) with the instruction: 

ROL WORD 

This instruction reads the carry bit into the rightmost bit position of WORD. 

At the same time, the leftmost bit of WORD falls into the carry bit. (If you 

have any doubts about the rotation operation, refer to Chapter 4.) 

It is important to remember that a rotation operation both saves the 

carry bit (here, into the rightmost bit position) and reconditions the carry 

bit with the value of bit 7. In this case, a zero falls into the carry. 

The next instruction 

BCC LOOP 

tests the carry and branches back to address LOOP, as long as the carry 

is 0. This instruction is the automatic bit counter. As a result of the first 

ROL, WORD contains 00000001. Eight shifts later, the 1 will fall into the 

carry bit and stop the branching. This is an ingenious way to implement 

an automatic loop counter without wasting an instruction to decrement 

the contents of a register. This technique shortens the program and 

improves its performance. 
When BCC finally fails, eight bits will have been assembled into WORD. 

This value should then be preserved in the memory. This is accomplished 

by the next two instructions (arrow 4 in Figure 6.7): 

LOA WORD 
PHA 

These instructions save the contents of WORD on the stack. But this is 

possible only if there is enough room in the stack. Provided this condition 



INPUT/OUTPUT TECHNIQUES 243 

is met, this is usually the fastest way to preserve a byte in the memory. The 
stack pointer is updated automatically. If you were not pushing a byte on 
the stack, you would have to use one more instruction to update a mem­
ory pointer. 

After the first byte of data has been saved, there is no guarantee that the 
first data bit to come in will be a one. It could be a zero. You must, there­
fore, reset the contents of WORD to 00000001, so that you can continue 
to use the carry bit as a bit counter. You can do this with the next two 
instructions: 

LOA #$01 
STA WORD 

Finally, you decrement the byte counter, since a byte has been assem­
bled, and test whether you have reached the end of the transfer. This is 
accomplished by the next two instructions: 

DEX 
BNE LOOP 

The above program has been designed for speed, so that you can cap­
ture a fast input stream of data bits. Once the program terminates, it is 
naturally advisable to immediately read from the stack the bytes that have 
been saved there, and transfer them into another part of the mem­
ory where they may be processed. I performed such a block transfer in 
Chapter 5. 

This program is more complex than the previous ones. Let's look at it again 
in more detail, and examine some possible trade-offs (see Figure 6.6). 

Referring to the bit serial transfer program, you see that from time to time a 
bit of data comes into bit position 0 of INPU1 For example, there might be 
three ones in succession. You must, therefore, differentiate between the suc­
cessive bits coming in. This is the function of the clock signal. 

The clock (or status) signal tells you when the input bit is valid. There­
fore, before you read a bit, you must test the status bit. If the status is 0, 
you must wait. If it is 1, the data bit is good. I assume here that the status 
signal is connected to bit 7 of register INPU1 

Once you have captured a data bit, you want to preserve it in a safe 
location. Then you want to shift it left, so that you can get the next bit. 

Unfortunately, in this program the accumulator is used to read and test 
both data and status. If you were to accumulate data in the A accumula­
tor, bit position 7 would be erased by the status bit. 

In this example, the first bit to come in is assumed to be a special signal, 
guaranteed to be a one. However, in general, it could also be a zero. You 
could modify the program to handle data as the first bit. Note that you 



244 PROGRAMMING THE 65816 

have saved the assembled byte in the stack; however, you could have 

saved it in some other memory area. 

THE HARDWARE ALTERNATIVE 

As usual for most standard input/output algorithms, you can implement 

the serial-to-parallel conversion through hardware. The hardware chip to 

do this, called a UART, automatically accumulates the bits. If you want to 

reduce the component count, you should use this program or a variation 

of it. 

BASIC INPUT/OUTPUT SUMMARY 

So far, you have learned how to perform elementary input/output opera­

tions and how to manage a stream of parallel data or serial bits. You are 

now ready to communicate with real input/output devices. 

COMMUNICATING WITH INPUT/OUTPUT 
DEVICES 

To exchange data with input/output devices, you must first ascertain whether 

data is available, and if so, if you want to read it; or you must ascertain 

whether the device is ready to accept data, and if so, if you want to send it. 

You can use two procedures to do this: handshaking and interrupts. 

HANDSHAKING 
Handshaking is generally used as a communication tool between two 

asynchronous devices-two devices that are not synchronized. For 

example, if you want to send a byte to a parallel printer, you must first 

make sure that the input buffer of the printer is available. You must, there­

fore, ask the printer, "Are you ready?" The printer will respond either yes 

or no. If it is not ready, you must wait. If it is ready, you can send the data 

(see Figure 6.8). 
Conversely, before reading data from an input device, you must verify 

whether the data is valid. You ask, "Is data valid?" The device responds 



INPUT/OUTPUT TECHNIQUES 245 

READY? _ 

(READ - D STATUS 
STATUS) REGISTER 

- YES/NO 

MPU 110 CHIP 
OUTPUT 
DEVICE 

DATA .. 
OUTPUT D 'I 
REGISTER ~ 

" 

Figure 6.8: Handshaking (Output) 

either yes or no, which is indicated either by status bits or by some other 

means (see Figure 6.9). 
As an analogy, if you wish to exchange information with someone who 

is doing something else at the time, you need to ascertain that that person 

is ready to communicate with you. The usual rule of courtesy is to shake 

hands; data exchange may then follow. This is also the procedure nor­

mally used in communicating with input/output devices. Let's examine a 
simple example. 

SENDING A CHARACTER TO THE PRINTER 
In this example, the character you wish to print is assumed to be in mem­

ory location CHAR. Here is the program you can use to print it: 

WAIT LOA 
BPL 
LOA 
STA 
BRA 

STATUS 
WAIT 
CHAR 
PRINTD 
WAIT 

WAIT TIL READY 
GET CHARACTER 
PRINT IT 
GO FOR NEXT 

This program is straightforward and uses the handshaking procedure 

described previously. The data paths appear in Figure 6.10. 
The character (called DATA) is located at memory location CHAR. First, 

the status of the printer is checked. Whenever bit 7 of the status register 

becomes 1, it indicates that the printer is ready for output-its output 

buffer is available. At this point, the character is loaded into the accumula­

tor and then output to the printer via the accumulator. As long as the sta­

tus bit remains 0, the program will remain in a loop, called WAIT. 



246 PROGRAMMING THE 65816 

DATA 
INPUT D K--= REGISTER 

"" 
MPU l/OCHIP INPUT 

DATA DEVICE 
READY? - D STATUS 

- REGISTER 

- YES/NO 

Figure 6.9: Handshaking (Input) 

STATUS 

A PRINTD 

CHAR 

PRINTER 

MEMORY 65816 

Figure 6.10: Data Paths for the Printer 

Let's now complicate the output procedure by requiring a code conver­

sion and by outputting to several devices at a time. 

OUTPUT TO A 7-SEGMENT LED 
You can use a traditional 7-segment light-emitting diode (LED) to display 

the digits 0 through 9, or even 0 through F hexadecimal by lighting combi­

nations of its seven segments. Figure 6.11 shows a 7-segment LED. Figure 

6.12 shows the characters generated with this LED. The segments of the 

LED are labeled A through G in both figures. 



INPUT /OUTPUT TECHNIQUES 247 

A 
AK /'vi 

•I •I 

/Vf 
F 

/'vi 

/Vf /Vf 

•I •I G 

/Vf 
E 

/V 

/VI /Vf 

• I •I 
D 

Figure 6.11: 7-Segment LED 

A I I I I I 
-

f s 
/_ 

I I_ _/ -, I 
G fc I -, ,-, I l ,-, 
D LI I LI I LI 

I I I ,- I -
I I 

I I ,- L I I ,- I _/ 

Figure 6.12: Hexadecimal Characters Generated with a 7-Segment LED 

For example, you can display 0 by lighting the segments ABCDEF. Now 
assume that bit 0 of an output port is connected to segment A, that 1 is 
connected to segment B, and so on, and that bit 7 is not used. The binary 



248 PROGRAMMING THE 65816 

code required to light up FEDCBA (to display 0) is, therefore, 0111111. In 

hexadecimal, this is 3E 
As an exercise, try computing the 7-segment equivalent for the hexade­

cimal digits 0 through F, and complete Table 6.1. 
You can also display hexadecimal values on several LEDs. 

DRIVING MULTIPLE LEDS 
An LED has no memory. It displays data only as long as its segment lines 

are active. To keep the cost of an LED display low, the microprocessor dis­

plays information on each of the LEDs in turn~ The rotation between the 

LEDs must be fast enough so that there is no apparent blinking. This 

implies that the time spent going from one LED to the next is less than 100 

milliseconds. Let's design a program that accomplishes this. 

You can use register Y to point to the LED on which you want to display 

a digit. A is assumed to contain the hexadecimal value to be displayed 

on the LED. The first step is to convert the hexadecimal value into its 

7-segment representation. In the preceding section, you built an equiv­

alence table. Since you are accessing the table, you can use the indexed 

addressing mode, where the displacement index is provided by the hex­

adecimal value. This means that you can obtain the 7-segment code for 

the hexadecimal digit 3 by looking up the third element of the table after 

the base. The address of the base is SEGBAS. Here is the program: 

LEDS TAX TRANSFER VALUE TO X 
LOA SEGBAS,X READ CODE FROM TABLE 
STA SEGADR,Y OUTPUT FOR SET DURA-

TION 
LOA #$50 DELAY VALUE = ANY 

LARGE NUMBER 
DELAY DEC A DELAY COUNTER 

BNE DELAY KEEP LOOPING 
DEY Y IS PORT INDEX 
BNE OUT DONE WITH LAST LED? 
LOY #MAXLED IF SO, RESET Y TO TOP 

LED 
OUT RTS 

The program assumes that the SEGADR points to the base address of 

the LEDs, and that Y is added to SEGADR to point to the next LED to be 

illuminated. The A accumulator contains the digits to be displayed. 

This program first looks up the 7-segment code corresponding to the 

hexadecimal value contained in the accumulator. The X register is used as 



INPUT/OUTPUT TECHNIQUES 249 

Hex LED code Hex LED code Hex LED code Hex LED code 

0 3F 4 8 c 
1 5 9 D 

2 6 A E 

3 7 B F 

Table 6.1: LED Codes for Hexadecimal Digits 

an index into SEGBAS. The code for the hexadecimal digit is added to the 

base address of the table: 

LEDS TAX 
LOA SEGBAS,X 

The next instruction outputs the 7-segment code to the address specified, 

by using Y as a displacement for the segment address: 

STA SEGADR,Y 

A delay loop is then implemented so that the code from the table is dis­

played for an appropriate duration. Here I have arbitrarily chosen a con­

stant, 50 hexadecimal. The next three instructions implement the delay 
loop: 

LOA 
DELAY DEC 

BNE 

#$50 
A 
DELAY 

Once the delay has been implemented, you simply decrement the LED 

pointer displacement and make sure you loop around to the highest LED 

address, if the smallest LED address has been reached: 

OUT 

DEY 
BNE 
LOY 
RTS 

OUT 
#MAXLED 

This program is assumed to be written as a subroutine; the last instruc­

tion is, therefore, RTS (return from subroutine). 



250 PROGRAMMING THE 65816 

You have now learned to solve common input/output problems. Now 

consider the case of a common peripheral: the Teletype. 

TELETYPE INPUT/OUTPUT 
The Teletype is a serial device that sends and receives bytes of information 

in a serial format. (The ASCII table appears in Appendix B.) In addition, 

every character is preceded by a start bit, and terminated by two stop bits. 

In the 20-milliamp current loop interface, which is most frequently used, 

the state of the line is normally a one. This is used to indicate to the pro­

cessor that the line has not been cut. A start is a 1-to-O transition. This indi­

cates to the receiving device that data bits follow. The standard Teletype is 

a 10-cps (characters per second) device. I have just established that each 

character requires 11 bits. This means the Teletype will transmit 110 bits 

per second-or that it is a 110-baud device. I will now design a program 

to send bits to the Teletype serially at the correct speed. 
One hundred ten bits per second implies that bits are separated by 9.09 

ms (milliseconds). This will have to be the duration in a program of the 

delay loop to be implemented between transmission or reception of suc­

cessive bits. Figure 6.13 shows the format of a Teletype Word. Figure 6.14 

displays the flowchart for bit input. Here is the program: 

TIYIN 
START 

NEXT 

STZ 
LOA 
BPL 
JSR 
LOA 
STA 
JSR 
LOX 
LOA 
STA 
LSR 
ROA 
JSR 
DEX 
BNE 
LOA 
STA 
JSR 
ATS 

CHAR 
STATUS 
START 
DELAY1 
TIYBIT 
TIYBIT 
DELAY9 
#$08 
TIYBIT 
TIYBIT 
A 
CHAR 
DELAY9 

NEXT 
TIYBIT 
TIYBIT 
DELAY9 

Let's examine this program in detail. 

CLEAR INPUT CHAR 

DATA READY? 
CENTER OF PULSE 
START BIT 
ECHO IT 
NEXT PULSE 9MS 
BIT COUNT 
READ DATA BIT 
ECHO IT 
SAVE IT IN CARRY 
PRESERVE IT IN CHAR 
EXT PULSE 9MS 
DECREMENT BIT COUNT 

READ STOP BIT 
ECHO IT 
SKIP SECOND STOP 



INPUT/OUTPUT TECHNIQUES 251 

Figure 6.13: Format of a Teletype Word 

First, you clear a memory location, then test the status of the Teletype to 

determine if a character is available: 

TTYIN 
START 

STZ 
LOA 
BPL 

CHAR 
STATUS 
START 

Then, you implement a 4.5 ms delay to sense the start bit in the middle 

of the pulse: 

JSR OELAY1 

DELAYl is the delay subroutine that implements the required delay. The 

first bit to come is the start bit. It should be echoed to the Teletype, but 

ignored by the rest of the program. This is done by the next few instruc­

tions: 

LOA TTYBIT 
STA TTYBIT 

You must now wait for the first data bit. The necessary delay is equal to 

9.09 ms and is implemented by a subroutine: 

JSR OELAY9 

The X index register is used as a counter and loaded with the value 8, 

because eight data bits are captured: 

LOX #$08 

Next, each data bit is read into A, in turn, then echoed. The data bit is 

assumed to arrive in bit position 0 of A. The data bit is then preserved in 



252 PROGRAMMING THE 65816 

NO 

NO 

Figure 6.14: TTY Input with Echo 

TIYIN 

WAIT 4.5 ms 
ECHO START BIT 

WAIT9.09 ms 

SHIFT IN DATA BIT 
ECHO IT 

WAIT 9.<YJ ms 

OUTPUT STOP BIT 

WAIT9.09ms 



A 

INPUT /OUTPUT TECHNIQUES 253 

CHAR, where it is shifted in. The transfer from A to CHAR is performed 

through the carry bit: 

NEXT LOA 
STA 
LSR 
ROR 

TTYBIT 
TTY BIT 
A 
CHAR 

Figure 6.15 illustrates this sequence. 
Next, the usual 9 ms delay is implemented, the bit counter is decre­

mented, and the loop is entered again-as long as the eight bits have not 

been captured: 

JSR DELAY9 
DEX 
BNE NEXT 

Finally, the stop bit is captured and echoed. It is usually sufficient to send a 

single stop bit; however, two could be sent back by using two more 

instructions: 

LOA TTYBIT 
STA TTYBIT 
JSR DELAY9 
RTS 

Let's examine the program. The logic is quite simple: whenever a bit is 

read from the Teletype (at address TTYBITI, it is echoed back to the Tele­

type. This is a standard feature of the Teletype. Whenever you press a key, 

ME.MORY 

WORD 

TELETYPE 
DATA 

TTY BIT 

Figure 6.IS: Teletype Input 



254 PROGRAMMING THE 65816 

the information is transmitted to the processor and then back to the print­

ing mechanism of the Teletype. This verifies that the transmission lines are 

working and that the processor is operating when a character is, indeed, 

printed correctly on the paper. 
Using the above program, let's now write a PRINTC program that prints 

the contents of memory location CHAR on the Teletype. Figure 6.16 

shows the relevant flowcharts. Here is the program: 

PRINTC LOX #11 COUNTER = 11 BITS 
CLC CLEAR CARRY = START BIT 
LOA CHAR GET CHARACTER 
ROL A CARRY BIT INTO A 

NEXT STA TTYBIT OUTPUT BIT 
JSR DELAY9 
ROR A NEXT BIT 
SEP #$01 SET CARRY BIT 
DEX BIT COUNT 
BNE NEXT 
RTS 

The X register is used as a bit counter for the transmission. The contents 

of bit 0 of register A are sent to the Teletype line (TTYBln. Note how the 

carry is used to provide a ninth bit (the start bit). Also, note that the carry 
is cleared by: 

CLC 

At the end of the program, the carry is set to 1 to generate a stop bit: 

SEP #$01 

Let's now print a string of characters. 

PRINTING A STRING OF CHARACTERS 

Assume that the PRINTC routine prints a character on the printer, the dis­
play, or any serial output device. Let's now print the contents of memory 

locations START to START + N. Figure 6.17 shows the memory and regis­
ters used. Here is the program: 

PSTRING LOY 
NEXT LOA 

STA 

JSR 

#NBR 
START,Y 
CHAR 

PRINTC 

LENGTH OF STRING 
GET CHARACTER 
PUT IT WHERE PRINTC 

WANTS IT 
PRINT IT 



DEY 
BNE 
RTS 

NEXT 

pERIPHERAL SUMMARY 

INPUT/OUTPUT TECHNIQUES 255 

DO IT AGAIN 

I have now described the basic programming techniques used to com­

municate with typical input/output devices. In addition to the data trans­

fer, you need to condition one or more control registers within each 1/0 

device, so as to condition correctly the transfer speeds, the interrupt 

mechanism, and various other options. Consult the user's manual to 

ENTER 

SEND START 
BIT 

SEND DATA 
BITS 

SEND STOP 
BIT 

EXIT 

Figure 6.16: Teletype Output 

SET BIT 
COUNTER TO 

11 

OUTPUT 
A BIT 

9 
NO 

(RETURN) 



256 PROGRAMMING THE 65816 

MEMORY 

y A 

COUNTER 

START 

OUTPUT REGISTER -- ~ TO PRINTER 

Figure 6.17: Printing a Memory Block 

obtain the appropriate information for each device. (See reference C207 
for more details on the specific algorithms for exchanging information 
with all the usual peripherals.) 

You have now learned to manage single devices. However, in a real sys­
tem, all peripherals are connected to the buses and may request service 
simultaneously. How can you then schedule the processor's time? 

/NPUTIOUTPUT SCHEDULING 

Since input/output requests may occur simultaneously, you must imple­
ment a scheduling mechanism in every system to determine the order in 
which service will be granted. Three basic input/output techniques are 
used: polling, interrupt, and DMA. Figure 6.18 illustrates these three tech­
niques. The techniques can all be combined with each other. I will now 
describe polling and interrupts. Since DMA is a hardware technique, I will 

not describe it here. (See references C201 and C207 for further informa­
tion on DMA.) 



MPU 

IRQ 

HOLD 

MPU 

INPUT/OUTPUT TECHNIQUES 257 

MEMORY 

POLLING 

MEMORY 

INTERRUPT 

t-~~~l~~--~~~~~t-~--t~~.,.....~~-,/ OMA 
I 
I 
I 
I 
I L ____________ _ 

Figure 6.18: Three Methods of 1/0 Control 



258 PROGRAMMING THE 65816 

POLLING 
Conceptually, polling is the simplest method for managing multiple periph­

erals. With this strategy, the processor interrogates, in turn, each device 

connected to the buses. If a device requests service, the service is granted. 

If it does not, the next peripheral is examined. Polling is used not only for 

devices, but for any device service routine. 
As an example, if the system is equipped with a Teletype, a tape 

recorder, and a CRT display, the polling routine would ask the Teletype, 

"Do you have a character to transmit?" It would also ask the Teletype out­
put routine, "Do you have a character to send?" Then, assuming the 
answers are negative, it would interrogate the tape-recorder routines, and 

finally, the CRT display. Even if only one device is connected to a system, 

polling would be used to determine whether it needs service. As 

examples of polling, Figures 6.19 and 6.20 show the flowcharts for read­

ing a papertape reader and printing on a printer. Figure 6.21 shows a poll­

ing loop flowchart for three devices. 
A program for a polling loop of four devices appears below. The 

devices are called 1, 2, 3, and 4. 

POLL4 LOA STATUS1 GET STATUS OF DEVICE 1 
BMI CALL1 SERVICE REQUEST 

TEST2 LOA STATUS2 DEVICE 2 
BMI CALL2 

TEST3 LOA STATUS3 DEVICE 3 
BMI CALL3 

TEST4 LOA STATUS4 DEVICE 4 
BMI CALL4 
BRA POLL4 TRY AGAIN 

CALL1 JSR ONE SERVICE DEVICE 1 
BRA TEST2 CONTINUE POLLING 

CALL2 JSR TWO DEVICE 2 
BRA TEST3 

CALL3 JSR THREE DEVICE 3 
BRA TEST4 

CALL4 JSR FOUR DEVICE 4 
BRA POLL4 TRY ALL AGAIN 

When a device is rea~ bit 7 of the status register for each device is 1. 

When the program senses a request, it calls the device handler subroutine. 

There is a fine point worth noting here. You may branch to the subrou­

tine directly with a BMI, thus eliminating the second part of the program, 

which carries out the JSR instruction. Use of the branch requires the 



SET READER 
ENABLE ON 

YES 

READ 
CHARACTER 

Figure 6.19: Reading from a Papertape Reader 

YES 

LOAD PUNCH 
OR PRINTER 

BUFFER 

TRANSMIT DAT A 

Figure 6.20: Printing on a Punch or Printer 

INPUT /OUTPUT TECHNIQUES 259 

NO 

NO 



260 PROGRAMMING THE 65816 

YES 

YES 

Figure 6.21: Polling Loop Flowchart 

SERVICE ROUTINE 
FOR DEVICE A 

SERVICE ROUTINE 
FOR DEVICE B 

SERVICE ROUTINE 
FOR DEVICEC 

handler subroutine to "know" which address to return to when it is fin­

ished. This means that if the simple branch is used, the handler could be 
called from only one place in the program. If the handler is used else­

where in the program, it must be rewritten with a different return address. 

Subroutines help eliminate unnecessary duplication of code. 
The advantages of polling are obvious. Polling is simple. It does not 

require hardware assistance, and it keeps all input/output synchronous 

with the program operation. The disadvantages are just as obvious. Most 

of the processor's time is wasted looking at devices that do not need serv­

ice. In addition, by wasting so much time, the processor might then be 
late in giving service to a device. 



INPUT /OUTPUT TECHNIQUES 261 

Another mechanism is, therefore, desirable to guarantee that the pro­

cessor's time is used for performing useful computations, rather than 

needlessly polling devices all the time. However, polling is used exten­

sively whenever a microprocessor has nothing better to do, as it keeps the 

overall organization simple. Let's examine an essential alternative to poll­

ing: interrupts. 

INTERRUPTS 
Figure 6.18 illustrates the concept of interrupts. A special hardware line, 

the interrupt line, is connected to a specialized pin of the microprocessor. 

You may connect multiple input/output devices to this interrupt line. 

Then, when any one of them needs service, it sends a level or pulse on 

this line. An interrupt signal is the service request from an input/output 

device to the processor. Let's examine the response of the processor to 

this interrupt. 
In all cases, when an interrupt occurs, the processor completes the 

instruction it is currently executing (otherwise, such an interruption would 

create chaos inside the microprocessor). Next, the microprocessor 

branches to an interrupt-handling routine, which processes the interrupt. 

Branching to this subroutine implies that the contents of the program 

counter must be saved on the stack. An interrupt must, therefore, cause 

the automatic preservation of the program counter on the stack. In addi­

tion, the processor status register (P) should also be preserved automati­

cally, as its contents will be altered by any subsequent instruction. Finally, 

if the interrupt-handling routine should modify any internal registers, these 

internal registers should also be preserved on the stack (see Figures 6.22 
and 6.23). 

s----

p 

PCL 

PCH 

PBR 

Figure 6.22: 65816 Stack after Interruption 



262 PROGRAMMING THE 65816 

()()()() 

s ---... 
A 

YL 

YH 

FFFF 

Figure 6.23: Saving Some Working Registers 

65816 INTERRUPTS 
An interrupt is a signal sent to the microprocessor that may request serv­

ice at any time. This signal is asynchronous to the program. Whenever a 

program branches to a subroutine, such branching is synchronous to pro­

gram execution-scheduled by the program. An interrupt, however, can 

occur at any time, and it generally suspends the execution of the current 

program (without the program knowing it). Because it may happen at any 

time relative to program execution, it is called asynchronous. 
Three interruption mechanisms are provided on the 65816: 

1. The nonmaskable interrupt (NMI) 

2. The usual interrupt request (IRQ) 

3. The abort interrupt (ABORTI 

Let's examine them. 

The Nonmaskable Interrupt (NM/) 
The nonmaskable interrupt (NMI) cannot be inhibited by the programmer. 

It is always accepted by the 65816 upon completion of the current 

instruction. 



INPUT/OUTPUT TECHNIQUES 263 

The NMI causes the automatic push of the program counter, the pro­
gram bank register, and the status register onto the stack (S). A new 
program counter is loaded from the data in memory locations OOFFEA 
and OOFFEB. The starting address of the NMI handler is stored with the 
high byte in OOFFEB and the low byte in OOFFEA, as shown in Figure 6.24. 

The NMI is used in case of "emergencies," such as a power failure. It 
does not offer the flexibility of the maskable interrupts. The address of the 
NMI handler must be placed in location OOFFEB:OOFFEA, before an inter­
rupt occurs. The interrupt handler must finish before the next NMI 
occurs, otherwise the stack may fill the memory. 

The Interrupt Request (IRQ) 
The interrupt request, a maskable interrupt, is the most commonly used 
interrupt mechanism. The maskable interrupt is ignored or masked when 
the interrupt disable bit (I) in the status register is set to 1. When the I bit 
is 0, IRQ interrupts are accepted by the processor. 

When an IRQ occurs and the I bit is 1, the PC, PBR, and P registers are 
pushed onto the stack. The PC of the IRQ handler is fetched from memory 

MEMORY 
()()()() 

NMIHANDLER 

- REGISTERS -

PC STACK 

I I 

)-I PC -
I I" 

/").. 

PCL OOFFEA 
~ 

PCH OOFFEB 

Figure 6.24: Nonmaskable Interrupt Sequence 



264 PROGRAMMING THE 65816 

locations OOFFEF:OOFFEE. This process is the same for the NMI. Usually, the 

program need not handle more than one IRQ at a time. However, the pro­

gram may clear the I bit and accept more IRQs, if necessary. 
The IRQ and NMI handlers are terminated with an RTI instruction, 

which restores the P, PC, and PBR registers from the stack. The I bit in the 

status register must be set to 0 after the IRQ handler finishes (just before 

the RTI instruction), otherwise no more IRQ interrupts will be accepted. 

The Abort Interrupt Request (ABORT) 
The abort interrupt request is similar to the NMI, as it is not maskable. The 

abort occurs when the abort input pin goes to 0. The instruction being 

executed will be completed without modifying the internal registers. 

When the instruction is finished, the PBR, PC, and P registers are stored 

on the stack and the new PC is fetched from OOFFE8:00FFE9. An abort is 

used to stop an instruction from executing if the hardware detects a prob­

lem accessing memory. 

Interrupt-Dependent Instruction 
One instruction on the 65816 depends on interrupts. It is the wait for 

interrupt instruction (WAI). 
The WAI instruction stops the 65816 from processing until an interrupt 

occurs. It also sets the ready (ROY) pin on the 65816 chip to 0. This is the 

ready acknowledge state of the processor. If the disable bit for interrupts 

is 0, the interrupt handler is executed when an interrupt occurs. If the 

interrupt is not enabled, execution of the program proceeds immediately 

after the WAI instruction when an interrupt occurs. This instruction can 

be useful for very fast 1/0 from a device. 

Interrupt Overhead 
Figure 6.18 gives a graphic comparison of the polling process versus the 

interrupt process-the polling process is illustrated on top, and the inter­

rupt process below. Note that in the polling technique, the program 

wastes a lot of time waiting. 
Using interrupts involves the following process: the program is inter­

rupted, the interrupt is serviced, and the program resumes. However, the 

obvious disadvantage of an interrupt is that it introduces several additional 

instructions at the beginning and end of the device handler program, thus 

resulting in a delay before execution of the first instruction of the device 

handler. This delay is additional overhead. 



INPUT/OUTPUT TECHNIQUES 265 

Now that I have clarified the operation of the interrupt lines, consider 
two remaining problems, involving: 

• Multiple devices triggering an interrupt at the same time 

• An interrupt occurring while another is being serviced 

MULTIPLE DEVICES CONNECTED TO A 
SINGLE INTERRUPT LINE 

Whenever an interrupt occurs, the processor branches to a specified 
address. Before it can do any effective processing, the interrupt handler 
must determine which device triggered the interrupt. You can use a poll­
ing method to find the device that interrupted the processor. The micro­
processor asks each device, in turn, "Did you trigger the interrupt?" If the 
answer is negative, it interrogates the next one. The following program 
illustrates this process: 

POLINT LOA 
BMI 

STATUS1 
ONE 

LOA STATUS2 
BMI TWO 

SIMULTANEOUS INTERRUPTS 

READ STATUS 
HANDLE DEVICE IF IT INTER­
RUPTED 

Another problem is that a new interrupt may be triggered during the exe­
cution of an interrupt-handling routine. Let's examine what happens when 
this occurs, and see how the stack can solve this problem. I previously 
indicated that this was another essential role of the stack; now I will dem­
onstrate its use. Figure 6.25 illustrates multiple interrupts. 

The contents of the stack are shown at the bottom of the illustration. 
(Time elapses from left to right in the illustration.) Looking at time TO on 
the left, program P is in execution. Moving to the right, at time Tl inter­
rupt 11 occurs. Assume that the interrupt mask was enabled, authorizing 
11. Program P is suspended, as shown at the bottom of the illustration. The 
stack contains, at the least, the program counter and the status register of 
program P, plus any optional registers that might be saved by the interrupt 
handler or 11 itself. 

At time Tl, interrupt 11 starts executing until time T2. At time T2, in­
terrupt 12 occurs. Assume that interrupt 12 has a higher priority than 



266 PROGRAMMING THE 65816 

TIME To Ti T2 T3 T5 T6 

PROGRAMP r------1--------------------r--
I 

INTERRUPT 11 I 1--------1 I ---t---1 
I 

INTERRUPT 12 I 
I 
I 
I 
I 
I 
I 

INTERRUPT 13 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 

I 

STACK 0 tE 0 
Ti T2 T3 

I 
I 

ffi 
T4 

I 
I 
I 
I 

G 
T5 

Figure 6.25: Stack Contents during Multiple Interrupts 

interrupt 11. If it had a lower priority, it would be ignored until 11 had 

been completed. At time T2, the registers for 11 are stacked (as shown 

at the bottom of the illustration). Again, the contents of the program 

counter and the status register are pushed onto the stack. In addition, the 

routine for 12 might decide to save additional registers. At time T3, 12 exe­

cutes to completion. 
When 12 terminates, the contents of the stack are automatically pulled 

back into the 6S816 (as illustrated at the bottom of Figure 6.2S). Thus, 11 

resumes execution automatically. Unfortunately, at time T4 an interrupt 13 

of higher priority occurs again. You can see at the bottom of the illustra­

tion that the registers for 11 are again pushed onto the stack. Interrupt 13 

executes from T 4 to TS and terminates at TS. At that time, the contents of 

the stack are pulled into the 6S816, and interrupt 11 resumes execution. 

This time it runs to completion and terminates at T6. At T6, the remaining 

registers saved in the stack are pulled into the 6S816, and program P can 

resume execution. You can verify that the stack is empty at this point. In 

fact, the number of dashed lines indicating program suspension a/so indi­

cate the number of levels in the stack. 

In practice, however, microprocessor systems are normally connected 

to a small number of devices using interrupts. It is, therefore, unlikely that 

a high number of simultaneous interrupts will occur in such a system. 

I have now shown you how to solve all the problems usually associated 

with interrupts. Their use is simple, and even novice programmers can 

use them to advantage. 



INPUT/OUTPUT TECHNIQUES 267 

SUMMARY 

In this chapter, I have presented the techniques used to communicate 
with the outside world, ranging from elementary input/output routines to 
more complex programs for communication with actual peripherals. You 
have learned how to develop all the usual programs and have even 
examined the efficiency of benchmark programs in the case of a parallel 
transfer and a parallel-to-serial conversion. Finally, you have learned 
to schedule the operation of multiple peripherals using polling and 
interrupts. 

Naturally, you may connect many exotic input/output devices to a sys­
tem. With the array of techniques presented so far, and with an under­
standing of the peripherals involved, you should now be able to solve 
most common problems. 

In the next chapter, I will examine the actual characteristics of the input/ 
output interface chips usually connected to a 65816. I will then discuss the 
basic data structures available for use. 

EXERCISES 

6-1: What are the maximum and the minimum delays that can be imple­
mented with the simple three-instruction delay loop program? 

6-2: Modify the three-instruction delay loop program to obtain a delay of 
about 100 ms. 

6-3: Write a program to implement a 100 ms delay (typical of a Teletype). 

6-4: Assume that the number of bytes to be transferred to memory is 
greater than 256. Determine the impact on the maximum data transfer 
rate. 

6-5: Compute the maximum speed at which the serial bit transfer program 
can read serial bits. Look up in Appendix Ethe number of cycles required 
by every instruction in the table, then compute the time that will elapse 
during execution of this program. To compute the length of time used by a 
loop, simply multiply the total duration of this loop, expressed in microsec­
onds, by the number of times it will be executed. Also, when computing 



268 PROGRAMMING THE 65816 

the maximum speed, assume that a data bit will be ready every time the 

input location is sensed. 

6-6: Can you explain why bit 7 is used for status and bit 0 for data in the bit 

serial transfer program? Does it matter? 

6-7: Modify the bit serial transfer program, assuming that the first bit to 

come in is valid data (not to be discarded), and that it can be 0 or 1. (Hint: 

The bit counter should still work correctly if you initialize it with the cor­

rect value.) 

6-8: Modify the bit serial transfer program to save the assembled byte in 

the memory area starting at BASE. 

6-9: Modify the bit serial transfer program so that the transfer stops when 

the S character is detected in the input stream. 

6-10: Modify the bit serial transfer program, assuming that the data is available 

in bit position 0 of location INPUT and the status information is available in bit 

position 0 of address INPUT + 1. 

6-11: You must usually send a start order to use a printer. Modify the 

printer program to generate such an order, assuming that you obtain the 

start command by writing a one in bit position 0 of the STATUS register, 

which is assumed to be bidirectional. 

6-12: Modify the printer program to print a string of n characters, where n 

is assumed to be less than 255. 

6-13: Modify the printer program to print a string of characters until it 

encounters a carriage-return code. 

6-14: You must usually turn off the segment drivers for an LED before it 

can display new digits. Modify the LED program by adding the necessary 

instructions (output 00 as the character code, prior to outputting the char­

acter). 

6-15: What would happen to the LED display if the DELAY label in the LED 

program were moved up by one line position? Would this change the tim­

ing? Would it change the appearance of the display? 

6-16: Assuming that the LED program is a subroutine, notice that it uses 

the register X internally and modifies its contents. If the subroutine freely 



INPUT/OUTPUT TECHNIQUES 269 

uses the memory area designated by SAVEX, can you add instructions at the 
beginning and end of this program to guarantee that, when the subroutine 
returns, the contents of the register X will be the same as when the subrou­
tine was entered? 

6-17: Same exercise as above, but assume that the memory area SAVEX, 
etc., is not available to the subroutine. (Hint: Remember that there is a 
built-in mechanism in every computer for preserving information in 
chronological order.) 

6-18: Write the delay routine that results in the 9.09 ms delay (DELAY9 sub­
routine). 

6-19: Assume that the area available to the stack is limited to 300 locations 
in a specific program. Also, assume that all the registers must always be 
saved and that the programmer allows interrupts to be nested-that is, to 
interrupt each other. What is the maximum number of simultaneous inter­
rupts that can be handled? Will any other factor contribute to reducing fur­
ther the maximum number of simultaneous interrupts? 

6-20: A 7-segment LED display can also display digits other than the hex 
alphabet. Compute the codes for: H, I, J, L, 0, P, S, U, Y, g, h, i, j, I, n, o, 
p, r, t, u, y. 

6-21: Refer to the flowchart for interrupt management (Figure 6.26) and 
answer the following questions: 

a. What is done by hardware? What is done by software? 

b. What is the use of the mask? 

c. How many registers should be preserved? 

d. How is the interrupting device identified? 

e. What does the RT/ instruction do? How does it differ from a subrou­
tine return? 

'f. Suggest a way to handle a stack overflow situation. 

g. What is the overhead ("lost time") introduced by the interrupt 
mechanism? 



270 PROGRAMMING THE 65816 

EXECUTE 
INSTRUCTION 

YES 

Figure 6.26: Flowchart for Interrupt Management 

NO 

PRESERVE 
REGISTERS 
(if necessary) 

IDENTIFY 
DEVICE 

(if necessary) 

RETURN 





INPUT /OUTPUT DEVICES 



7 

WITH THE PROGRESS OF VLSI, more elaborate input/output chips have 
been developed. As a result, the task of programming a system includes 
not only programming the microprocessor itself, but also programming 
the input/output chips. In fact, it is often more difficult to remember how 
to program the various control options of an input/output chip than it is to 
program the microprocessor itself. This is not because the programming is 
more difficult, but because each device has its own idiosyncrasies. In 
this chapter, I will examine the most general input/output device-the 
programmable input/output chip (the PIO)-and then look at some 
input/output devices from The Western Design Center. 

The 65816 was designed as a 16-bit processor, but it can interface easily 
with any of the extensive 65xx family of 1/0 chips developed for 8-bit pro­
cessors. The 65816 can also interface with most 6800 1/0 devices. 

THE USTANDARD" PIO 

Although there is no "standard" PIO, most manufacturers produce PIOs 
that are similar in function. A PIO provides a multiport connection for 
input/output devices. (A port is a set of eight input/output lines.) At the 
very least, each input/output device needs a data buffer to stabilize the 
contents of the data bus on output. Most PIOs are equipped with a buffer 
for each port. 

In Chapter 6, I established that a microcomputer can use a handshaking 
procedure or interrupts to communicate with an 1/0 device. The PIO uses 
a similar procedure to communicate with a peripheral. Therefore, to 
implement a handshaking function, each PIO must be equipped with at 
least two control lines per port. 



274 PROGRAMMING THE 65816 

A microprocessor also needs to read the status of each port. Thus, each 

port must be equipped with one or more status bits. Finall~ the PIO has 

several options for configuring its resources. To specify these program­

ming options, a programmer must be able to access a special register in 

the PIO called the control register. In some cases, the status information is 

part of the control register. 

One essential faculty of the PIO is that each line may be configured as 

either an input line or an output line. Figure 7.1 shows a diagram of a 

PIO. It is up to the programmer to specify whether a line will be input or 

output. To program the direction of the lines, a data-direction register is 

provided for each port. A zero in a bit position of the data-direction regis­

ter specifies an input. A one specifies an output. 

CA 1 CA2 PORT A 

PORA 

DDRA 

CRA 

Figure 7.1: Typical PIO 

PERIPHERAL 
DATA 

REGISTER 

DATA 
DIRECTION 
REGISTER 

CONTROL 
REGISTER 

DATA 
BUS 

PDRB 

DDRB 

CR•I 

PORT B CB2 CB 1 

O=INPUT 
1 =OUTPUT 

RSO RSl 

~-­
REGISTER IRQA IRQB 

SELECT 



INPUT /OUTPUT DEVICES 275 

It may be surprising that a zero is used for input and a one for output, 
when usually a zero corresponds to output and a one to input. This 
change is quite deliberate: whenever power is applied to the system, it is 
important that all the 1/0 lines are configured as input. Otherwise, if the 
microcomputer is connected to some dangerous peripheral, the periph­
eral may be activated by accident. When a reset is applied, all registers 
are normally cleared, which results in configuring all lines of the PIO as 
inputs. The connection to the microprocessor appears on the left of the 
illustration in Figure 7.1. The PIO connects to the 8-bit data bus, the 
microprocessor address bus, and the microprocessor control bus. The 
programmer simply specifies the address of any register to be accessed 
within the PIO. 

THE INTERNAL CONTROL REGISTER 
The control register of the PIO provides several options for generating or 
sensing interrupts, or for implementing automatic handshake functions. I 
will not provide a complete description of these facilities here. However, 
very simply, in a practical system that uses a PIO, you must usually refer to 
the data sheet that shows the effects of setting the various bits of the con­
trol register. When the system is initialized, the programmer must load the 
control register of the PIO with the correct contents for the expected 
application. 

PROGRAMMING A PIO 

Let's now look at a typical sequence, using a PIO channel (assuming an 
input): 

1. Load the control register by using a programmed transfer between a 
65816 register (usually the accumulator) and the PIO control regis­
ter. The options and operating mode of the PIO are set when the 
register is loaded (see Figure 7.2). The loading is normally done only 
once, at the beginning of a program. 

2. Load the direction register to specify the direction in which the 1/0 
lines will be used (see Figure 7.3). 

3. Read the status register to check if a valid byte is available on input 
(see Figure 7.4). 



276 PROGRAMMING THE 65816 

IRQA 

EN 

RESET 

CONTROL 

} 

CHIP 
SELECT 

}
REGISTER 

SELECT 

INTI 
STATUS 

(CRA) 

IRQB ...--+---------------! 
INT/ 

STATUS 

Figure 1.2: Using a PIO: Load Control Register 

PAO­

PA7 

PBO­

PB7 

4. Read the port; the byte is read into the 65816 (see Figure 7.5). 

THE WESTERN DESIGN CENTER 65SC2 I PIA 

The 65SC21 PIA (peripheral interface adapter) is a two-port PIO with an 

architecture that is essentially the same as the standard model I have just 

described. Figure 7.6 shows the actual pinout of a 65SC21. 



INPUT/OUTPUT DEVICES 277 

IRQA 

CONTROL 

} CHIP 
SELECT 

} REGISTER 
SELECT 

IRQB 

Figure 1.3: Using a PIO: Load Data Direction 

INT/ 
STATUS 

(CRA) 

INT/ 
STATUS 

PAO-
PA7 

PBO-
PB7 

The control register for each port has bits that control the conditions 
under which an interrupt can be generated and the conditions when the 
handshake bits change state. 

PROGRAMMING THE WESTERN DESIGN CENTER PIO 
Let's now examine a typical sequence for using a PIO: 

1. Load the control register to set the handshake bits mode. 



278 PROGRAMMING THE 65816 

IRQA 

EN 

RESET 

IRQB 

CONTROL 

J 
CHIP 

SELECT 

} 
REGISTER 

SELECT 

Figure 1.4: Using a PIO: Read Status 

INT/ 
STATUS 

PAO­
PA7 

PBO­
PB7 

2. Load the data direction register of port A to specify that lines O to 5 

are inputs and lines 6 and 7 are outputs. 

3. Read a word by reading the contents of the input buffer. 

THE. 65816 AC/A 
The W65SCS 1 ACIA (asynchronous communications interface adapter) is 

a peripheral chip designed to facilitate asynchronous communications in 



00-
07 

IRQA 

IRQB 

CONTROL 

} CHIP 
SELECT 

} REGISTER 
SELECT 

INPUT/OUTPUT DEVICES 279 

INT/ 
STATUS 

(CRA) 

INT/ 
STATUS 

PAO-
PA7 

PBO-
PB7 

Figure 1.S: Using a PIO: Read Input 

serial form. It includes a UART (universal asynchronous receiver­
transmitter). The essential function of the ACIA is serial-to-parallel and 
parallel-to-serial conversion. The ACIA also offers a choice of data format 
and interrupt modes. 

QTHE.R 110 CHIPS 
Because the 65816 is commonly used as an upgraded replacement for the 
6502, it has been designed so that it can be used with almost any of the 



280 PROGRAMMING THE 65816 

DO 33 2 PAO 
Dl 32 3 PAl 

D2 31 4 PA2 

DATA s PA3 
PORT A 

BUS 6 PA4 
7 PAS 
8 PA6 

D7 26 9 PA7 
10 PBO 
11 PBl 
12 PB2 
13 PB3 
14 PB4 PORT B 

REGISTER [ RSO 36 lS PBS 

SELECT RSl 3S 16 PB6 
17 PB? 

CHIP f ~ 21 
<1>2 ---. 2S 40 CAl }HANDSHAKE 

CONTROL RESET 34 39 CA2 BITS PORT A 

INTERRUPT IRQA 38 

REQUEST IRQB 37 18 CBl } HANDSHAKE 

20 19 CB2 BITS PORT B 

+sv GND 

Figure 1.6: The 65SC21 PIA Pinout 

usual 6502 input/output chips, as well as with specific 1/0 chips manufac­

tured for the 65816 by The Western Design Center. 

SUMMARY 

To make effective use of input/output components, you need to under­

stand the function of each bit or group of bits within the various control 

registers. These complex new chips automate several procedures pre­

viously carried out by software or special logic. In particular, many of the 

handshaking procedures are automated within components, such as the 

ACIA. Interrupt handling and detection may also be internal. 



INPUT/OUTPUT DEVICES 281 

You should now be familiar with the functions of the basic signals and 
registers of 1/0 devices. Naturally, in the future, new components will be 
introduced that offer a hardware implementation of even more complex 
algorithms. 



APPLICATION EXAMPLES 



8 
IN THIS CHAPTER, you can sharpen your new programming skills by 
developing a collection of utility programs that fetch characters from an 
1/0 device and process them in various ways. These programs give you a 
chance to apply the knowledge and techniques you have learned so far to 
develop several routines that are useful in many applications. The devel­
opment of these routines demonstrates how the architecture of the 65816 
can make the programming of such common algorithms exceptionally 
straightforward. 

Before beginning, let's clear an area of the memory in which to put the 
characters from the 1/0 device. Clearing memory is not always necessary; 
I do it here as a programming example. 

CLEARING A SE.CT/ON OF ME.MORY 

I will start by clearing (zeroing) the contents of the memory from address 
BASE to address BASE + LENGTH, where LENGTH is less than 256 bytes. 
The program is: 

ZEROM LOX #LENGTH LOAD X WITH LENGTH 
LOA #0 CLEAR ACCUMULATOR 

CLEAR STA BASE,X CLEAR LOCATION 
DEX DECREMENT COUNTER 
BNE CLEAR END OF SECTION? 
RTS 

In this program, I assume that the length of the section of memory is 
equal to LENGTH. I use the X index register as a pointer to the current 
byte to be cleared and as a counter. If LENGTH is greater than 256, the 
16-bit indexing mode should be used. 

You could use this utility in a memory test program to zero the contents 
of a block. The memory test program would then verify that the con­
tents of the block remain zero. 



284 PROGRAMMING THE 65816 

GETTING CHARACTERS IN 

I will now write a program that reads characters from an 1/0 device. 

Assuming that the computer you are using has a keyboard as an input 

device, each time you type a character, the character will be saved in an 

area of memory called the BUFFER, until a special character called space 

is encountered. (Appendix B gives the code number for space.) The sub­

routine GETCHAR fetches one character from the keyboard and puts it in 

the A accumulator. I assume that 256 characters (maximum) will be 

fetched before the program encounters a space character. 

STRING LOX #0 SET INDEX TO ZERO 

NEXT JSR GET CHAR GET A CHARACTER 

CMP #SPC CHECK FOR SPACE 

BEQ OUT FOUND IT? 
STA BUFFER,X STORE CHAR IN BUFFER 

INX INCREMENT POINTER 

BRA NEXT GET NEXT CHAR 

OUT RTS 

At the end of this routine, you have a string of characters in the mem­

ory buffer. You can now process them in various ways. 

TESTING A CHARACTER 

This program determines if the character at memory location LOC is 

equal to 0, 1, or 2: 

ZOT LOA LOC GET CHARACTER 

CMP #0 IS IT A ZERO? 

BEQ ZERO BRANCH ROUTINE 

CMP #1 ACNE? 
BEQ ONE 
CMP #2 ATWO? 
BEQ TWO 
BRA NOTFND FAILURE 



APPLICATION EXAMPLES 285 

You simply read the character, then use the CMP instruction to check its 

value. 
Let's now run a different test. 

BRACKET TESTING 

This program determines if the ASCII character at memory location LOC 

is a digit between 0 and 9: 

BRACK 

IN 
OUT 

LOA 
AND 
CMP 
BCC 
CMP 
BEQ 
BCS 
LOA 
ATS 

LOC 
#$7F 
#$30 
OUT 
#$39 
IN 
OUT 
#0 

GET CHARACTER 
MASK OUT PARITY BIT 
ASCII 0 
CHAR TOO LOW? 
ASCII 9 
CHAR IS 9 
CHAR TOO HIGH? 
FORCE ZERO FLAG 

ASCII 0 is represented in hexadecimal by 30 or by BO, depending upon 

whether the parity bit is used or not. Similarly, ASCII 9 is represented in 

hexadecimal by 39 or by B9. 
The purpose of the second instruction of the program is to delete bit 7 

(the parity bit) in case it was used, so the program is applicable to both 

cases. The value of the character is then compared to the ASCII values for 

0 and 9. When using a comparison instruction, the Z bit is set if both the 

contents of the register and the operand are equal. The carry bit is set if 

there is a borrow. This means that the carry bit is set if the value of the 

operand is less than or equal to the contents of the register. 

The instruction LDA #0 forces a zero into the Z bit. The Z bit is used to 

indicate to the calling routine that the character in LOC was indeed in the 

interval (0,9). You could also use other conventions, such as loading a digit 

into the accumulator, to indicate the results of the test. 

When using an ASCII table, note that parity is used often. For example, 

the ASCII representation for 0 is 0110000, a 7-bit code. If, however, you 

use odd parity and guarantee that the total number of ones in a word is 

odd, then the code becomes 10110000 (or BO in hexadecimal). An extra 1 

is added to the left side of the code. Let's now develop a program to gen­

erate parity. 



286 PROGRAMMING THE 65816 

GENE.RATING PARITY 

This program generates even parity in bit position 7: 

PARITY LOA 
STZ 
LOX 

BITCNT LSR 
BCC 
INC 

NOINC DEX 
BNE 
LSR 
BCC 
LOA 
ORA 
STA 

DONE RTS 

CHAR 
ONECNT 
#7 
A 
NOINC 
ON EC NT 

BITCNT 
ONECNT 
DONE 
CHAR 
#$80 
CHAR 

GET CHARACTER 
CLEAR COUNT OF ONES 
COUNT7 BITS 
SHIFT CHAR RIGHT 
C =ZERO SKIP 
COUNT CARRY BITS 
LOOP TILL 
7 BITS ARE TESTED 
CHECK IF A IS EVEN 
IF EVEN THEN DONE 
GET CHARACTER 
SET BIT 7 

This program shifts a character and then counts the number of ones in it. 

If the number of ones is even, the parity bit is not set; if the number is 

odd, the parity bit is set. 
The memory location ONECNT is used as working space for this pro­

gram. Shifting destroys the character, but it is preserved in CHAR. 

CODE. CONVERSION: ASCII TO BCD 

Converting ASCII to BCD is simple. In this example, you see that the hexa­

decimal representation of ASCII characters 0 to 9 is either 30 to 39 or BO 

to B9, depending on parity. The BCD representation is obtained simply by 

dropping the 3 or the B-masking the left nibble (4 bits): 

ASCBCD JSR 
BNE 
LOA 
AND 
STA 

BRACK CHECK THAT CHAR IS 0 TO 9 
ILLEGAL EXIT IF ILLEGAL CHAR 
CHAR GET CHARACTER 
#$OF ZERO HIGH NIBBLE 
BCDCHR STORE RESULT 

In full BCD notation, the first byte contains the count of BCD digits, 

the next contains the sign, and every successive nibble contains a BCD 



APPLICATION EXAMPLES 287 

digit (I assume no decimal point). The last nibble of the block may not 
be used. 

(ONVERTING HEX TO ASCII 

In the example, the A register contains one hexadecimal digit. You simply 
need to add a 3 (or a B) into the left nibble: 

AND #$F ZERO LEFT NIBBLE 
CLC PREPARE TO ADD 
ADC #$30 ASCII 
CMP #$3A CORRECTION NEEDED? 
BCC OUT 
ADC #7 CORRECTION FOR A TO F 

flNDING THE LARGEST ELEMENT OF A TABLE 

The beginning address of the table is contained at memory address BASE. 
The first entry of the table is the number of bytes it contains. The follow­
ing program searches for the largest element of the table. Its value is then 
stored in A, and its position is stored in INDEX. 

This program uses registers A and Y, and indexed addressing, to search 
a table anywhere in memory (see Figure 8.1): 

MAX LOY #0 CLEAR INDEX 
LOA BASE,Y BYTES IN TABLE 
TAY PUT BYTE COUNT IN Y 
LOA #0 . INITIALIZE MAX VALUE 

LOOP CMP BASE,Y COMPARE ENTRY 
BCS NOSWIT BRANCH IF LESS THAN MAX 
LOA BASE,Y SET NEW POSITION 
STY INDEX LOAD NEW MAX 

NOSWIT DEY DECREMENT COUNTER 
BNE LOOP KEEP GOING UNTIL ZERO 
ATS 

This program tests the nth entry. If it is greater than A, the entry goes 
into A, and its location is remembered in INDEX. The (n - 1) entry is 
then tested, and so on. This program works for positive integers only. 



288 PROGRAMMING THE 65816 

SUM OF N E.LEME.NTS 

This program computes the 32-bit sum of N entries of a table. Each entry 
is 16 bits. The starting address of the table is contained at memory address 
BASE, in page zero. The first entry of the table contains the number of ele­
ments in N. The 32-bit sum is left in memory locations SUMLO and 
SUMHI. If the sum requires more than 32 bits, only the lower 32 bits are 
kept. (The high-order bits are said to be truncated.) 

This program modifies registers A and Y. It assumes 256 elements maxi­
mum (see Figure 8.2): 

SUMIG REP 

LOY 
LOA 
TAY 
STZ 
STZ 
CLC 

ADLOOP LOA 
ADC 
STA 
BCC 
INC 
CLC 

NOCARY DEY 
BNE 
ATS 

#$30 

#0 
BASE,Y 

SUM LO 
SUMHI 

SET PROCESSOR TO 16-BIT 
MODE 
INITIALIZE Y TO ZERO 
READ LENGTH INTO A 
TRANSFER COUNT TO Y 
CLEAR RESULT 

CLEAR CARRY FOR ADC 
BASE,Y GET TABLE ENTRY 
SUMLO COMPUTE PARTIAL SUM 
SUMLO STORE IT 
NOCARY CHECK FOR CARRY 
SUMHI ADD CARRY TO HIGH WORD 

FOR NEXT SUM 
DECREMENT WORD COUNT 

ADLOOP KEEP ADDING TIL END 

This program should be self-explanatory. 

CHECKSUM COMPUTATION 

A checksum is a digit or set of digits computed from a block of successive 
characters. The checksum is computed at the time the data is stored and 
then put at the end. To verify the integrity of the data, the data is read, and 
the checksum is recomputed and compared with the stored value. A dis­
crepancy indicates an error or failure. 

You can use several algorithms. In this example, exclusive-OR operates 
on all the bytes in a table of N elements, and leaves the results in the 



A I CURRENT MAX I 
-

I I 

~ POINTER TO MAX 
I 

y 

Figure B. I: Largest Elements in a Table 

A COUNT 

y 

Figure 8.2: Sum of N Elements 

APPLICATION EXAMPLES 289 

-

COUNT=N 

ELEMENT 1 

ELEMENT N 

~ 

LENGTH=N 

ELEMENT 1 

• • • 
ELEMENT N 

-
I NDEX 

BASE 

BASE 

SUMLO 

SUMHI 



290 PROGRAMMING THE 65816 

accumulator. As usual, the base of the table is stored at address BASE. The 
first entry of the table is its number of elements, N. The program then 

modifies A and Y. N must be less than 256 elements. 

CHKSUM LOY 
LOA 
TAY 
TAX 
LOA 

CHLOOP EOR 

DEY 
BNE 
STA 

RTS 

COUNT THE ZEROS 

#0 CLEARY 
BASE,Y GET LENGTH 

PUT LENGTH IN Y 
PUT LENGTH IN X 

#0 CLEAR CHECKSUM 
BASE,Y COMPUTE CHECKSUM FOR 

BASE,Y 
DECREMENT COUNTER 

CHLOOP REPEAT UNTIL END 
BASE,X PUT CHECKSUM AT END OF 

TABLE 

This program counts the number of zeros in the table, and puts the total 
in location TOTAL. It modifies A and X. 

ZEROS LOX #0 CLEAR X 
LOA BASE,X GET LENGTH 
TAX PUT LENGTH IN X 
STZ TOTAL ZERO TOTAL 

ZLOOP LOA BASE,X GET ELEMENT 
BNE NOTZ IS IT A ZERO? 
INC TOTAL IF SO, INCREMENT ZERO 

COUNTER 
NOTZ DEX DECREMENT COUNTER 

BNE ZLOOP 
RTS 

8 LOCK TRANSFER 

This program picks up every third entry in the source block at address 
FROM and stores it in a block at address TO: 

FER3 LOA 
STA 

#LENGTH GET LENGTH 
COUNT STORE IN COUNT 



APPLICATION EXAMPLES 291 

LOY #0 SET UP POINTERS 
TYX 

LOOP LOA FROM,X GET AN ENTRY 
STA TO,Y STORE IT 
INX 
INX 
INX POINT TO THIRD 

INY POINT TO NEXT 
DEC COUNT 
BNE LOOP 

B UBBLE.-SORT 

Bubble-sort is a sorting technique used to arrange the elements of a table 

in ascending or descending order. The bubble-sort technique derives its 

name from the fact that the smallest element "bubbles up" to the top of 

the table. Every time an element collides with a "heavier" element, it 

jumps over it. 
Figures 8.3 and 8.4 show practical examples of a bubble-sort. The list to 

be sorted contains the numbers 10, 5, 0, 2, and 100, and must be sorted 

in descending order (0 on top). The algorithm is simple. The flowchart for 

the algorithm appears in Figure 8.5. 
The two top (or else the two bottom) elements are compared. If the 

lower element is less (lighter) than the top element, they are exchanged. 

Otherwise, they are left alone. For practical purposes, the exchange, if it 

occurs, is indicated by a flag called EXCHANGED. The process is then 

repeated on the next pair of elements, until all elements have been com­

pared two by two. 
Figure 8.3 illustrates this first pass in steps 1, 2, 3, 4, 5, and 6, going from 

the bottom up. (Equivalently, you could go from the top down.) If no ele­

ments have been exchanged, the sort is complete. If an exchange has 

occurred, you must start over again. In Figure 8.4, you can see that four 

passes are necessary. This process is simple, and widely used. 
One possible complication resides in the actual mechanism of the 

exchange. When exchanging A and B, you may not write 

A-B 

or 

B=A 



292 PROGRAMMING THE 65816 

0 10 G) 10 0 10 

5 5 5 1=2 

0 0 1=3 0 1=3 

2 1=4 2 1=4 2 

100 1=5 100 100 

100>2 2>0 0<5 
NO CHANGE NO CHANGE EXCHANGE 

0 10 0 10 0 

0 0 10 

5 5 5 

2 2 2 

100 100 100 

EXCHANGED O<lO EXCHANGE 0 

EXCHANGE END OF PASS l 

0 0 © 0 0 0 

10 10 10 

5 5 1=3 2 

2 1=4 2 1=4 5 

100 1=5 100 100 

100>2 2>5 EXCHANGED 

NO CHANGE EXCHANGE 

® 0 ® 0 @ 0 l=l 

10 1=2 2 2 1=2 

2 1=3 10 10 

5 5 5 

100 100 100 

2<10 EXCHANGED 2>0 

EXCHANGE NO CHANGE 
END OF PASS 2 

Figure 8.3: Bubble-Sort Example, Phases 1 to 12 



APPLICATION EXAMPLES 293 

® 0 e 0 @ 0 

2 2 2 

10 10 1=3 5 

5 1=4 5 1=4 10 

100 1=5 100 100 

100>5 5<10 EXCHANGED 
NO CHANGE EXCHANGE 

® 0 ® 0 0 

2 1=2 2 2 

5 1=3 5 5 

10 10 10 1=4 

100 100 100 1=5 

5>2 2>0 100>10 

NO CHANGE NO CHANGE NO CHANGE 

END OF PASS3 

® 0 @ 0 @ 0 l=l 

2 2 1=2 2 1=2 

5 1=3 5 1=3 5 

10 1=4 10 10 

100 100 100 

100>5 5>2 2>0 
NO CHANGE NO CHANGE NO CHANGE 

END 

Figure 8.4: Bubble-Sort Example, Phases 13 to 21 



294 PROGRAMMING THE 65816 

YES 

EXCHANGED = 0 

GET NUMBER 
OF ELEMENTS N 

l=N 

DECREMENT I 

READ E'(I) 

EXCHANGE E AND E' 
TEMP=E(I) 
E(l)=E'(I) 

E'(l)=TEMP 

EXCHANGED= 1 

Figure 8.5: Bubble-Sort Flowchart 

DONE 



APPLICATION EXAMPLES 295 

as this would result in the loss of the previous value of A. (Try it on an 
example.) The correct solution is to use a temporary variable or location 

to preserve the value of A. For example, you may use: 

TEMP= A 
A=B 
B =TEMP 

This process, called circular permutation, works. (Try it on an example.) 
All programs implement the exchange in this way. Figure 8.5 illustrates 

the process. Figure 8.6 shows the register and memory assignments. The 
program is: 

BUBBLE LOX #0 CLEAR X 
LOA BASE,X GET LENGTH 
TAX PUT LENGTH IN X 
STZ EX CHG CLEAR EXCHANGE FLAG 

NEXT LOA BASE,X A = CURRENT ENTRY 
DEX POINT TO NEXT ELEMENT 
BEQ NOSWIT DONE WITH ONE PASS 
CMP BASE,X COMPARE WITH NEXT 
BCS NEXT GO TO NOSWITCH IF 

CURRENT > = NEXT 
TAY SAVE A 
LOA BASE,X GET NEXT 
INX POINT TO LAST 
STA BASE,X STORE IN LAST 
TVA 
DEX 
STA BASE,X STORE LAST IN NEXT 
INC EX CHG SET EXCHANGE FLAG 
BRA NEXT GET NEXT ELEMENT 

NOSWIT LOA EX CHG EXCHANGED = O? 
BNE BUBBLE RESTART IF NOT = 0 
RTS 

SUMMARY 

You have just explored common utility routines that use combinations of 
the various techniques described in previous chapters. In several of these 



296 PROGRAMMING THE 65816 

A ..... I __ ___.___ __ ___. 
y I.__ _ ___..___ _ ____. 

LIST 

x 

LIST 

EX CHG 

Figure 8.6: Registers and Memory for Bubble-Sort 

routines, I used a special data structure, called a table, that is useful for 
designing programs. There are other techniques you can use to structure 
data; I discuss them in the next chapter. 

EXERCISES 

8-1: Write a memory test program that: 

• Zeros a 256-word block and verifies that each location is 0 

• Writes all ones and verifies the contents of the block 

• Writes 01010101 and verifies the contents 

• Writes 10101010 and verifies the contents 



APPLICATION EXAMPLES 297 

8-2: Modify the program you wrote for Exercise 8-1 so that it fills the mem­
ory section with alternating bytes of zeros and ones. 

8-3: Try to improve the STRING program by: 

• Echoing the character back to the device (for a Teletype, for example) 

• Checking that the input string is no longer than 256 characters 

8-4: Is the following program equivalent to the Bracket Testing program? 

LOA LOC 
SEC 
SBC #$30 
BMI OUT 
SEC 
SBC #10 
BPL OUT 
CLC 
ADC #10 

8-5: Determine if an ASCII character contained in an accumulator is a let­
ter of the alphabet. 

8-6: Using the Parity Generation program as an example, verify the parity 
of a word. You must compute the correct parity, then compare it to the 
one that is expected. 

8-7: Write a program to convert BCD to ASCII. 

8-8: Write a program to convert BCD to binary (more difficult). (Hint: 
N3N2N 1N0 in BCD is 

((((N3 x 10) + N2) x 10 + N1) x 10) + N0 

in binary.) 

8-9: Convert HEX to ASCII, assuming a packed format (two hex digits in A). 

8-10: Modify the program that finds the largest element in a table so that it 
also works for negative numbers in two'.s complement. 

8-11: Will the program in Exercise 8-10 also work for ASCII characters? 



298 PROGRAMMING THE 65816 

8-12: Write a program that sorts n numbers in ascending order. 

8-13: Write a program that sorts n names (three characters each) in alpha­

betical order. 

8-14: Modify the Sum of N Elements program to: 

• Compute a 16-bit sum 

• Compute a 24-bit sum 

• Detect any overflow 

8-15: Modify the Count the Zeros program to count: 

• The number of stars (the * character) 

• The number of letters of the alphabet 

• The number of digits between 0 and 9 





DATA STRUCTURES 

~~~~~~~~~~~~~~~~~~~~ 1-------- ------------
~- --·- --------------.

9

TO DESIGN A GOOD PROGRAM, you need both a good algorithm
design and a good data structure design. Since most simple programs do
not involve significant data structures, up to this point I have only concen­
trated on designing and coding good algorithms in a given machine lan­
guage. I will now focus on the design of data structures, so that you can
develop more complex programs. I have already used two data structures
in this book: the table and the stack. I will now examine several other,
more general, data structures.

PART I-THEORY
The material presented in Part I of this chapter is theoretical in concept; it
involves the logical organization of data in any system. I have limited the
material in this chapter to that which is essential for understanding com­
mon data structures. I will begin by reviewing the most common data
structure: the pointer.

POINTERS

A pointer is a number that designates the location of actual data. Every
pointer is an address. However, every address is not necessarily a pointer.
An address is a pointer only if it points to some type of data or structured
information. In this book, you have already encountered a typical
pointer-the stack pointer, which points to the top of the stack (or just
over the top of the stack). The stack is a common data structure. Another
example is indirect addressing: the indirect address is always a pointer to
the data that is to be retrieved.

302 PROGRAMMING THE 65816

LISTS

Almost all data structures are organized as lists. Let's examine several

types of lists.

A SEQUENTIAL LIST
A sequential list-either a table or a block-is probably the simplest data

structure {see Chapter 8). Tables are normally organized by a specific cri­

terion, such as alphabetical or numerical ordering. Because of this, it is

easy to retrieve an element in a table {for example, by using indexed

addressing}.
A block normally refers to a group of data that has definite limits, but

whose contents are not ordered. A block may contain a string of charac­

ters, it may be a sector on a disk, or it may be some logical area {called a

segment) of the memory. Generally, it is not easy to access a random ele­

ment of a block; directories facilitate the retrieval of blocks of information.

A DIRECTORY
A directory is a list of tables or blocks. For example, a file system normally

uses a directory structure. As a simple example, the master directory of a

system may include a list of users' names {see Figure 9.1). The entry for

user John points to John's file directory. In this case, the file directory is a

table of pointers containing the names and locations of all of John's files.

In this case, it is a two-level directory. This flexible directory system allows

the inclusion of additional intermediate directories-a convenient feature

for users.

A LINKED LIST
In a system, there are often blocks of information that represent data, events,

or other structures that cannot be moved around easily. If they could be eas­

ily moved, you would probably assemble them into a table to sort or struc­

ture them. Assume, for example, that you want to leave several blocks where

they are, but you also want to establish an ordering among them, such as

first, second, third, or fourth. To do this, you can use a linked list {see

Figure 9.2). In this illustration, a list pointer, called FIRSTBLOCK, points to the

beginning of the first block. A dedicated location within Block 1, such as the

USER
DIRECTORY

JOHN -

JOHN'S
FILE

DIRECTORY

ALPHA

SIGMA

DATA STRUCTURES 303

JOHN'S FILE

ALPHA

-
DATA

-
SIGMA

~

Figure 9.1: A Directory Structure

FIRST

BLOCK

first or last word, contains a pointer to Block 2, called PTRl. The process is
then repeated for Block 2 and Block 3. Since Block 3 is the last entry in the
list, by convention PTR3 contains either a special nil value or points to itself.
This is done so that the program can detect the end of the list. This structure
is economical, as it requires only one pointer per block and frees you from
having to physically move the blocks in the memory.

Let's now examine how a new block is inserted (see Figure 9.3). Assume
that the new block is at address NEWBLOCK, and is to be inserted
between Block 1 and Block 2. Pointer PTRl is simply changed to the
value NEWBLOCK, so that it now points to Block X. PTRX now contains
the former value of PTRl (it points to Block 2). The other pointers in the
structure are left unchanged. You can see that the insertion of a new block

BLOCK 1 BLOCK 2

-----~

BLOCK 3
PTR
3

Figure 9.2: A Linked List

304 PROGRAMMING THE 65816

has simply required the updating of two pointers in the structure-clearly

an efficient procedure.
Several types of lists have been developed to facilitate specific types of

access, insertions, and deletions, to and from the list. Let's now examine

some of the more frequently used types of linked lists.

A QUEUE
Figure 9.4 displays a queue, formally called a FIFO, or first-in, first-out list.

For clarity, assume that the block on the left is a service routine for an out­

put device, such as a printer. The blocks appearing on the right are the

request blocks, from various programs or routines, to print characters.

The order in which they are serviced is the order established by the wait­

ing queue. You can see that the first event to obtain service is Block 1;

Block 2 is next; and Block 3 follows. In a queue, the convention is that

any new event arriving in the queue is inserted at the end. In Figure 9.4,

for example, any new event is inserted after PTR3. This guarantees that

the first block inserted in the queue is the first one serviced. It is quite

common in a computer system to have queues for several events, when­

ever they must wait for a scarce resource such as the processor or some

input/output device.

A STACK
I have already discussed the stack structure, a last-in, first-out (LIFO) struc­

ture. The last element deposited on top is the first one to be removed.

A stack may be implemented as either a sorted block or a list. Because

most stacks in microprocessors are used for high-speed events, such as

BLOCKX

BLOCK 1
PTR

BLOCK2

Figure 9.3: Inserting a New Block

PTR
x

BLOCK 3
PTR
3

DATA STRUCTURES 305

subroutines and interrupts, a continuous block (rather than a linked list
structure) is usually allocated to the stack.

LINKED LIST VERSUS BLOCK
Similarly, a queue could be implemented as a block of reserved locations.
Advantages of using a continuous block include fast retrieval and the elim­
ination of pointers. A disadvantage is that it is usually necessary to dedi­
cate a fairly large block to accommodate the worst-case size of the
structure. In addition, it is often difficult or impractical to insert or remove
elements from within the block. Since memory is traditionally a scarce
resource, blocks have usually been reserved for fixed-size structures or for
structures, such as the stack, that require the maximum speed of retrieval.

A CIRCULAR LIST
Round robin is a common name for a circular list. A circular list is a linked
list in which the last entry points back to the first (see Figure 9.5). In the
case of a circular list, a current-block pointer is often kept. In the case of
events or programs waiting for service, a current-event pointer is moved
by one position to the left or right each time. In a round robin, all blocks

SERVICE
ROUTINE

NEXT

BLOCK 1 BLOCK 3

Figure 9.4: A Queue

306 PROGRAMMING THE 65816

have the same priority. However, a circular list may also be used as a sub­

case of other structures, to facilitate the retrieval of the first block after the

last one when performing a search.
A polling program is a good example of a circular list. It usually pro­

ceeds in a round robin fashion, interrogating all peripherals and then

coming back to the first one.

A TREE STRUCTURE
You can use a tree structure whenever a logical relationship (called a syn­

tax) exists among all elements of a structure. A simple example of a tree

structure is a descendant or genealogical tree (see Figure 9.6). The tree in

Figure 9.6 shows that Smith has two children: a son, Robert, and a daugh­

ter, Jane. Jane, in turn, has three children: Liz, Tom, and Phil. Tom has two

children: Max and Chris. Robert, on the left of the illustration, has no

descendants.
This tree is a structured tree. The directory in Figure 9.1 is an example

of a simple, two-level tree.
Trees are used to advantage whenever you can classify elements

according to a fixed structure, thus facilitating insertion and retrieval. In

addition, you can use trees to arrange groups of information in a struc­

tured way, so that you can easily use them for later processing, such as in

a compiler or interpreter design.

A DOUBLY LINKED LIST
You can establish additional links between elements of a list. The simplest

example is the doubly linked list. Figure 9.7 shows the usual sequence of

EVENT 1 EVENT 2 ••• EVENT N

CURRENT EVENT

Figure 9.5: A Round Robin Is a Circular List

DATA STRUCTURES 307

SMITH

ROBERT

PHIL

6 CHRIS

Figure 9.6: A Genealogical Tree

links from left to right, plus another sequence of links from right to left.
The goal is to allow easy retrieval of the elements just before and after the
element being processed. This method does, however, cost an extra
pointer per block.

SEARCHING AND SORTING

The process of searching and sorting elements of a list depends directly on
the type of structure used for the list. Programmers have developed many
searching algorithms for the most frequently used data structures. As an

BLOCK 1 I PTR H PTR I BLOCK 2 I PTR H PTR I BLOCK 3

Figure 9.1: A Doubly Linked List

308 PROGRAMMING THE 65816

example, you used indexed addressing in Chapter 8 to search through a

table for a particular element. Recall that you can use indexed addressing
whenever the elements of a table are ordered by known criteria. Such

elements can then be retrieved by their numbers.
Sequential searching refers to the linear scanning of an entire block. This

technique is clearly inefficient, but you may need to use it when the ele­

ments are not ordered.
Binary or logarithmic searching attempts to find an element in a sorted

list by dividing the search interval (the list being searched) in half at every

step. For example, assume you are searching an alphabetical list. You
might start in the middle of a table and determine if the name you are

looking for is before or after that point. If it is after, you can eliminate the
first half of the table and look at the middle element of the second half.

You compare this entry again to the one you are looking for, restrict your

search to one of the two halves, and so on. The maximum length of a

search is then guaranteed to be log2n, where n is the number of elements

in a table.
Many other search techniques exist; however, I cannot describe them

all here.

SECTION SUMMARY

In this section, I have offered only a brief presentation of the usual data

structures used by programmers. Although most common data structures

have been organized into types and given a name, the overall organiza­

tion of data in a complex system may use any combination of data struc­

tures, or even require programmers to invent more appropriate ones. The
array of possibilities is limited only by your imagination. Similarly, several

well-known sorting and searching techniques have been developed for

coping with the usual data structures. A comprehensive description is

beyond the scope of this book. In this section, I have stressed the impor­

tance of designing appropriate structures for manipulating data and pro­
vided the basic tools to that effect.

Let's now examine actual programming examples in detail.

PART II-DESIGN EXAMPLES
This section offers design examples for typical data structures, including

the table, the sorted list, and the linked list. In particular, you will learn to

DATA STRUCTURES 309

program searching, insertion, and deletion algorithms for these structures.

To thoroughly understand the design examples, you must understand the

concepts presented in the first part of this chapter. The programs I present
here use many of the addressing modes of the 65816 and integrate many of
the concepts and techniques presented in previous chapters.

I will now introduce three structures: a simple list, an alphabetic list,
and a linked list, plus directory. For each structure, I will develop three

programs: SEARCH, ENTER, and DELETE.

DATA RE.PRESENTATION FOR THE. LIST

In the example shown in Figure 9.8, note that both the simple list and the
alphabetic list use a common representation for each list element. Each ele­

ment, or entr~ includes a 3-byte label, and an n-byte block of data, where n
is between 1 and 253. Thus, at most, each entry uses one page (256 bytes).

Within each list, all elements are the same length (see Figure 9.9). Note that
the programs operating on these two simple lists use some common variable
conventions:

ENTLEN

TABASE
POINTR
OBJECT
TAB LEN

length of an element: for example, if each element has 9
bytes of data, ENTLEN = 3 + 9 - 12
base of the list or table in memory
running pointer to the current element
current entry to be located, inserted, or deleted
number of entries

All labels are assumed to be distinct. Changing this convention would
require a minor change in the programs.

3-BYTE LABEL DATA

Figure 9.B: A Single List Entry

310 PROGRAMMING THE 65816

ENTLEN

TABLEN

TAB
BASE

ENTRY

ELEMENT

ELEMENT
2

~

....

- -
- -

M=

N=

LABEL

DATA

--
c
c
c
D

-
--

D

c
c
c
D

--

Figure 9.9: Typical List Entries in the Memory

-
-

-....

-...

-....

-......

LENGT HOF ENTRY

NUM BER OF ENTRIES

~

} ~&L

DATA

r~L

DATA

M
BYTES

ENTER
NEW
ELEMENT

ENTLEN

ENTLEN

DATA STRUCTURES 311

SIMPLE LIST
In this example, I have organized a simple list as a table of n elements.
The elements are not sorted (see Figure 9.10). The program searches by
scanning the list until it either finds an entry or reaches the end of the
table. The program inserts a new entry by appending it to the existing
ones. When deleting, the entries in higher memory locations, if any, are
shifted down to keep the table continuous. Let's examine these functions
in more detail.

SE.ARCHING
Consider a serial search technique, where each entry's label field is compared
in turn to the OBJECT's label, letter by letter. If the 16-bit mode is used, only
two comparisons are needed to check the three bytes of the label, but the
entry length must be an even number. This program uses the absolute
indexed addressing mode and the direct indirect indexed mode.

The search proceeds in an obvious way. Figure 9.11 shows the corre­
sponding flowchart for the program, called SEARCH (see Listing 9.1).

TABASE ELEMENT 1 * LENGTH= ENTLEN

ELEMENT 2

POINTR CURRENT ELEMENT

ELEMENT n (TABLEN = n)

FREE SPACE FREE SPACE INSERT

OBJECT
TO BE INSERTED

Figure 9.10: The Simple List

312 PROGRAMMING THE 65816

Figure 9.11: Table Search Flowchart

INSERTING

SEARCH

COUNTER=
NUMBER OF ENTRIES

READ ENTRY
(3 LETTERS)

COUNTER=
COUNTER-1

POINT
TO NEXT ENTRY

EXIT
YES

FOUND

YES (SET A TO "FF")

FAILURE EXIT
YES

When you insert a new element, the first available memory block
ENTLEN bytes long at the end of the list is used (see Figure 9.10). The pro-

DATA STRUCTURES 313

SEARCH LDA #TABASE SET POINTR TO
STA POINTR START OF TABLE
LDX #TABLEN GET TABLE LENGTH
BEQ OUT QUIT IF EMPTY

ENTRY LDY #0
LDA OBJECT, Y
CMP (POINTR), Y COMPARE FIRST TWO BYTES
BNE NOGOOD
!NY POINT TO 2ND AND 3RD BYTES
LDA OBJECT,Y
CMP (POINTR),Y COMPARE NEXT TWO BYTES
BEQ FOUND

NOGOOD DEX CHECK IF ALL ENTRIES
BEQ OUT HAVE BEEN CHECKED
LDA #ENTLEN POINT TO NEXT ENTRY
CLC
ADC POINTR
STA POINTR
BRA ENTRY

FOUND LDA #$FFFF
OUT RTS

Listing 9.1: SEARCH Program for a Simple List

gram first checks that the new entry is not already in the list. All labels are
assumed to be distinct in this example. If the entry is not found, the pro­
gram increments the list length TABLEN, and moves the OBJECT to the
end of the list. Figure 9.12 shows the corresponding flowchart for the pro­
gram, called NEW (see Listing 9.2). The 16-bit mode is being used, so only
half as many transfers as there are bytes in the list need to be done.

DE.LE.TING
To delete an element from the list, the elements following that element in
the list at higher addresses are merely moved up by one element position.
The length of the list must also be decremented (see Figure 9.13). The cor­
responding program is called DELETE (see Listing 9.3).

ALPHABETIC LIST

Unlike a simple list, an alphabetic list or table keeps all of its elements
sorted in alphabetical order. This allows the use of faster search tech­
niques than can be used with a simple list.

314 PROGRAMMING THE 65816

EXIT

END

Figure 9.12: Table Insertion Flowchart

SEARCHING
The search algorithm is a classic binary search. Recall that this technique
is essentially analogous to the one used to find a name in a telephone
book, where you start somewhere in the middle of the book and then,
depending on the entries found, go either forward or backward to find
the desired entry. This method is fast and reasonably simple to implement.

The binary search flowchart appears in Figure 9.14. Listing 9.4 shows
the program.

The alphabetic list keeps the entries in alphabetical order and retrieves
them using a binary or logarithmic type search. Figure 9.15 shows an
example of a binary search. The search is somewhat complicated because
it is necessary to keep track of several conditions. The major problem is to
avoid searching forever for an object that is not there. In such a case, the
entries with higher and lower alphabetic values would be alternately

DATA STRUCTURES 315

NEW CLC SET TO NATIVE MODE
XCE
REP #$30 SET TO 16-BIT MODE
JSR SEARCH
BNE OUTN FOUND IF NOT 0
LDA TABLEN
BEQ INSERT INSERT IF TABLEN 0
LDA POINTR
CLC
ADC #ENTLEN POINT BEYOND END OF TABLE
STA POINTR

INSERT INC TABLEN
LDY #0
LDA #ENTLEN DIVIDE LENGTH BY 2
LSR A BECAUSE 16 BITS ARE MOVED
TAX EACH TIME

LOOPN LDA OBJECT,Y MOVE OBJECT TO END OF TABLE
STA (POINTR),Y
INY
INY
DEX
BNE LOOPN LOOP UNTIL ALL WORDS ARE MOVED

OUTN SEC SET TO EMULATION MODE
XCE
RTS

Listing 9.2: NEW Program for a Simple List

BEFORE AFTER

8 0
0 0
0 0

DELETE~ 0

~
0

0
MOVE

0 TEMPTR __.,

0
MOVE

Figure 9.13: Deleting an Entry in a Simple List

tested forever. To avoid such an occurrence, a flag is maintained in the
program to preserve the value of the carry flag after an unsuccessful com­
parison. When the INCMNT value, which shows the amount by which
the pointer was incremented, reaches the value 1, the CLOSENOW flag is

316 PROGRAMMING THE 65816

NOT
FOUND

FLAGS=O

POINT TO TABLE BASE

YES

LOGICAL POSITION=
INCREMENT VALUE=

TABLE LENGTH/ 2
(add 1 if it was add)

POINT TO MIDDLE
OF TABLE

INCREMENT VALUE=
INCREMENT VALUE/2

ADD ONE IF
IT WAS ODD

COMPARE OBJECT
TO ENTRY

Figure 9.14: Binary Search Flowchart

PRESERVE CARRY
(sign of comparison)

IN COMPRES FLAG

YES

NO NOT ___ ,,

FOUND

ENTRY
LARGER

NO

NOT
FOUND

UPDATE
POINTERS

(ENTRY)

YES

YES

ENTRY
SMALLER

NO
(TOO HI)

MOVE POINTERS
DOWN BY 1

Figure 9.14: Binary Search Flowchart (continued)

CLOSE NOW
=COMPRES

(ENTRY)

NOT
FOUND

DATA STRUCTURES 317

YES

(TOO LOW)

INCREMENT= 1
CLOSE NOW=

COMPRES

(ENTRY)

318 PROGRAMMING THE 65816

DELETE CLC
XCE
REP
JSR
BEQ
DEC
BEQ
LDA
CLC
ADC
STA
LDY

LOOPD LDA
LSR
STA

MOVENT LDA
STA
!NY
!NY
DEC
BNE
DEX
BNE

OUTD SEC
XCE
RTS

#$30
SEARCH
OUTD
TABLEN
OUTD
POINTR

#ENTLEN
TEMPTR
#0
#ENTLEN
A
LENGTH
(TEMPTR) ,Y
(POINTR), Y

LENGTH
MO VENT

LOO PD

Listing 9.3: DELETE Program for a Simple List

SEARCH STZ CLOSE
STZ CMPRES
LDA #TABASE
STA POINTR
LDA TABLEN
BNE DIV
BRL OUT

DIV LSR A
ADC #0
STA LOGPOS
STA INCMNT
LDX LOGPOS
DEX
BEQ ENTRY

LOOP LDA #ENTLEN
CLC
ADC POINTR
STA POINTR
DEX
BNE LOOP

SET TO NATIVE MODE

SET TO 16-BIT MODE

NOT FOUND IF 0
DECREMENT TABLE LENGTH
DONE IF EMPTY

POINT TO ENTRY AFTER
THE ENTRY BEING DELETED

DIVIDE LENGTH BY 2
BECAUSE 16 BITS ARE MOVED
EACH TIME
MOVE AN ENTRY UP

UNTIL ALL ENTRIES ARE MOVED

SET TO EMULATION MODE

CLEAR FLAGS

POINT TO BEGINNING

QUIT IF TABLEN 0
DIVIDE TABLEN BY 2
ADD BACK ODD BIT
SAVE LOGICAL POSITION
SAVE INCREMENT

IF LOGPOS=O POINTR IS READY
MULTIPLY ENTLEN BY LOGPOS
BY ADDING ENTLEN LOGPOS TIMES
ADD RESULT TO POINTR

Listing 9.4: Binary SEARCH Program for an Alphabetic List

DATA STRUCTURES 319

ENTRY LOA INCMNT DIVIDE INCMNT BY 2
LSR A
ADC #0
STA INCMNT
LOY #0
LOA OBJECT,Y
CMP (POINTR) ,Y COMPARE OBJECT TO TABLE ENTRY
BNE NOGOOD
!NY
LOA OBJECT,Y
CMP (POINTR), Y
BNE NOGOOD
BRL FOUND OBJECT FOUND IN TABLE

NOGOOD LOY #$FFFF
BCC TESTS C=O IF OBJ<POINTR
LOY #1

TESTS STY CMPRES STORE IN COMPARISON RESULT FLAG
LOY INCMNT
DEY IS INCMNT l?
BNE NEXT CHECK CLOSE FLAG
LOA CLOSE IF CLOSE FLAG NOT SET
BEQ MAK CLO SET CLOSE FLAG
SEC
SBC CMPRES SEE IF GONE PAST WHERE
BEQ NEXT OBJECT SHOULD BE
BRL OUT IF PAST NOT FOUND

MAK CLO LOA CM PRES MAKE CLOSE=COMPRES
STA CLOSE

NEXT BIT CMPRES
BM! SUBIT
LOA TABLEN SEE IF ADDITION OF INCMNT WILL
SEC RUN PAST END OF TABLE
SBC LOGPOS
BEQ OUT CHECK IF AT END OF TABLE
SBC INCMNT
BCC TOO HI
LOX INCMNT OK TO INCREMENT POINTR

ADDER LOA #ENTLEN MULTIPLY ENTLEN BY INCMNT
CLC
ADC POINTR ADD RESULT TO POINTR
STA POINTR
DEX
BNE ADDER
LOA LOGPOS
CLC
ADC INCMNT
STA LOGPOS
BRL ENTRY

TOO HI INC LOGPOS POINT TO NEXT ENTRY
LOA #ENTLEN
CLC
ADC POINTR
STA POINTR
BRA SETCLO

Listing 9.4: Binary SEARCH Program for an Alphabetic List (continued)

320 PROGRAMMING THE 65816

SU BIT LDA LOGPOS SEE IF INCREMENT WILL RUN PAST
SEC THE OTHER END OF THE TABLE
SBC INCMNT
BEQ TOO LOW
BCC TOO LOW
STA LOGPOS SAVE NEW LOGICAL POSITION
LDX INCMNT

SUBLOP LDA POINTR MULTIPLY ENTLEN BY INCMNT
SEC
SBC #ENTLEN
STA POINTR SUBTRACT RESULT FROM POINTR
DEX
BNE SUBLOP
BRL ENTRY

TOO LOW LDX LOGPOS
DEX
BEQ OUT IF LOGPOS 1 OBJECT NOT IN TABLE
DEC LOGPOS
LDA POINTR POINT TO PREVIOUS ENTRY
SEC
SBC #ENTLEN
STA POINTR

SETCLO LDA #1
STA INCMNT
LDA CMPRES
STA CLOSE
BRL ENTRY

OUT LDA #$FFFF
FOUND RTS

Listing 9.4: Binary SEARCH Program for an Alphabetic List (continued)

set to 1. The COMPRES (comparison result) flag stores the carry bit from
the last comparison. When CLOSENOW is set, the value of COMPRES is
compared with the carry bit of the most recent comparison. If they are
not equal, the search terminates because the object cannot be found.

The carry bit for the last comparison is returned in A for use by the
NEW program. This allows the NEW program to determine whether a
new element goes before or after the entry pointed to by the SEARCH
program.
The other major problem that you must deal with is the possibility
of running off one end of the table when adding or subtracting the in­
crement. You can solve this by performing a test add or subtract of that
increment to the logical position or element number. The program then
compares this number to 1 and the table length. If it is greater than the
table length or less than 1, the program adjusts it to fall within the table
boundaries.

OBJECT

TABASE

~
AAA

BAC

FIL

TES

XYZ

FIRST TRY
SEARCH INTERVAL=5

(No)

DATA STRUCTURES 321

TES

XYZ

SECOND TRY
SEARCH INTERVAL= 2

(No)

Figure 9.IS: A Binary Search

The following variables are used in the program:

LOGPOS
INCMNT

CLOSE
CM PRES

logical position (element number)

value by which the pointer will be incremented or
decremented if the next comparison fails

short for CLOSENOW
short for comparison result

An additional complication to this program occurs because the search

interval at times can be either even or odd. Since the interval is divided by

two to form the increment, you use an LSR instruction. If the bit falling off

the right end is not added back into the accumulator, then only even or

odd numbered elements would be checked, depending on the value of

the table length. This would cause erroneous results.

Study the Binary SEARCH program in Listing 9.4 with care, as it is much

more complex than the linear search.

E.LEME.NT INSE.RTION
To insert a new element, you must conduct a binary search. If the pro­

gram finds the element in the table, it does not need to insert it. But if it

322 PROGRAMMING THE 65816

does not find it, the program must insert that element immediately before
or after the last element to which it was compared. The value of the
COMPRES flag indicates whether the new object should be inserted
immediately before or after the last element compared. All the elements
following the new location are moved down by one block position, and
the new object is inserted.

Figure 9.16 shows the insertion process, and Listing 9.5 displays the
NEW program.

E.LEME.NT DE.LET/ON
Similarly, a binary search is conducted to find the object. If the search
fails, the element does not need to be deleted. If the search succeeds, the
element is deleted, and all the following elements are moved up by one
block position. A corresponding example appears in Figure 9.17. Figure
9.18 shows the flowchart, and Listing 9.6 displays the program.

LINKED LIST
The linked list is assumed to contain, as usual, the three alphanumeric
characters for the label, followed by 1 to 250 bytes of data, then a 2-byte

BEFORE

TABASE -+ AAA

ABC

BAT

TAR

ZAP

1

OBJECT ---.i BAC MOVE
~-~~~~~~DOWN

Figure 9.16: Inserting a New Element, BAC

AFTER

AAA

ABC

BAC

BAT

TAR

ZAP

..- NEW
ELEMENT

NEW CLC
XCE
REP
JSR
BEQ
LDA
BEQ
BIT
BPL
DEC
BRA

LOSIDE LDA
CLC
ADC
STA

SETUP LDA
SEC
SBC
BEQ
TAX
TAY
DEY
BEQ

UPLOOP LDA
CLC
ADC
STA
DEY
BNE

SETEMP LDA
CLC
ADC
STA
LDA
LSR
STA
LDY

ANOTHR LDA
STA
INY
INY
DEC
BNE
LDA
SEC
SBC
STA
DEX
BNE
LDA
CLC
ADC
STA

INSERT LDY
LDA

#$30
SEARCH
OUTN
TABLEN
INSERT
CMPRES
LOSIDE
LOGPOS
SETUP
#ENTLEN

POINTR
POINTR
TABLEN

LOGPOS
INSERT

SETEMP
#ENTLEN

POINTR
POINTR

UPLOOP
POINTR

#ENTLEN
TEMPTR
#ENTLEN
A
LENGTH
#0
(POINTR), Y
(TEMPTR), Y

LENGTH
ANOTHR
POINTR

#ENTLEN
POINTR

SETEMP
#ENTLEN

POINTR
POINTR
#0
#ENTLEN

DATA STRUCTURES 323

SET TO NATIVE MODE

SET TO 16-BIT MODE

FOUND IF ZERO
IF TABLE EMPTY
INSERT

SET LOGICAL POSITION
OBJECT GOES AFTER POINTR
OBJECT GOES BEFORE POINTR

SET HOW MANY ENTRIES TO
MOVE TO MAKE ROOM FOR OBJECT
INSERT IF 0 TO MOVE

SKIP IF POINTING TO LAST ENTRY
ADD ENTLEN TO POINTR UNTIL
POINTING TO THE LAST ENTRY

PREPARE TO MOVE ENTRIES

DIVIDE BY 2

MOVE AN ENTRY

UNTIL ALL ENTRIES ARE MOVED
TO MAKE SPACE FOR OBJECT

POINTR TO WHERE OBJECT GOES IN TABLE

Listing J.S: NEW Program for an Alphabetic List

324 PROGRAMMING THE 65816

LSR A DIVIDE BY 2
STA LENGTH

INNER LDA OBJECT, Y
STA (POINTR), Y INSERT OBJECT
INY
INY
DEC LENGTH
BNE INNER
INC TABLEN INCREMENT TABLE LENGTH

OUTN SEC SET TO EMULATION MODE
XCE
RTS

Listing 9.S: NEW Program for an Alphabetic List (continued)

MOVE
UP

BEFORE

AAA

ABC

BAC

BAT

TAR

ZAP

~

1r
DELETE

Figure 9.11: Deleting an Element, BAC

AFTER

AAA

ABC

BAT

TAR

ZAP

pointer that contains the starting address of the next entry, and finally, a
1-byte marker. Whenever this 1-byte marker is set to 1, it prevents the in­
sert routine from substituting a new entry in place of the existing one.
Figure 9.19 shows the structure of an entry.

Further, a directory contains a pointer to the first entry for each letter of
the alphabet, facilitating retrieval. The program assumes that the labels are
ASCII alphabetic characters. All pointers at the end of the list are set to a
NIL value (which is here equal to the table base minus 1), as this value
should never occur within the linked list.

NO

DELETE

COUNT HOW MANY
ELEMENTS FOLLOW THE

ONE TO BE DELETED

RESULT= COUNTER
(LOGPOS)

POINT TO NEXT
ENTRY POINTER
= TEMP(SOURCE)

TRANSFER IT
UP ONE BLOCK

POINT TO NEXT ENTRY
POINTER= POINTER

(DESTINATION)

DECREMENT LOGPOS

SET 2 FLAGS

RTS

YES

Figure 9.18: Deletion Flowchart for an Alphabetic List

DATA STRUCTURES 325

326 PROGRAMMING THE 65816

DELETE CLC SET TO NATIVE MODE
XCE
REP #$30 SET TO 16-BIT MODE
JSR SEARCH
BNE OUTD NOT ZERO NOT FOUND
LDA TABLEN SEE HOW MANY ENTRIES ARE IN
SEC THE TABLE AFTER OBJECT
SBC LOGPOS
BEQ DEC ER IF NONE ALMOST FINISHED
STA LOGPOS SAVE COUNT IN LOGPOS
LDA #ENTLEN POINT TEMPTR AFTER OBJECT IN TABLE
CLC
ADC POINTR
STA TEMPTR
LDY #0

BI GLOP LDA #ENTLEN
LSR A DIVIDE BY 2
STA LENGTH

WORD LDA (TEMPTR), Y MOVE ENTRIES
STA (POINTR) ,Y
INY
!NY
DEC LENGTH
BNE WORD
DEC LOGPOS
BNE BI GLOP UNTIL TABLE HAS NO GAP

DEC ER DEC TABLEN DECREMENT TABLE LENGTH
OUTD SEC SET TO EMULATION MODE

XCE
RTS

Listing 9.6: DELETE Program for an Alphabetic List

c c c I
0

I
0

I / ..__/__I
0_P__.___P ...__0,...........

__ U_N_l_Q_U..,,.E_LA_B_E_L _ _,,, __ D_A-TA-(l_t_o..,,.2_50_B_YT-ES_)_-J~ +
(ASCII) NEXT OCCUPIED

Figure 9.19: Data Structure of a Linked List Entry

The insertion and deletion programs perform the obvious pointer
manipulations. They use the INDEXED flag to indicate if a pointer pointing
to an object came from a previous entry in the list or from the directory
table. Figure 9.20 shows the data structure.

An application for this data structure would be a computerized address
book, where each person is represented by a unique three-letter code

DATA STRUCTURES 327

DIRECTORY
A A

"A" POINTER ~ ~

POINTER NIL

R

"R" POINTER --+

NIL

Figure 9.20: Linked List Structure

(perhaps the usual initials), and the data field contains a simplified address
plus the telephone number (up to 250 characters). Let's examine the struc­
ture in more detail. The entry format also appears in Figure 9.19. As
usual, the conventions are:

ENTLEN
TABASE

total element length (in bytes)
address of base list

Here, REFBASE points to the base address of the directory, or the refer­
ence table.

Each two-byte address within this directory points to the first occur­
rence of the letter to which it corresponds in the list. Thus; each group of
entries with an identical first letter in its labels actually forms a separate list
within the whole structure. This feature facilitates searching and is analo­
gous to an address book. Note that no data are moved during a deletion;
only pointers are changed, as in every well-behaved linked-list structure.

If no entry starting with a specific letter is found, or if there is no entry
alphabetically following an existing one, the pointers will point to the
beginning of the table minus 1 (NIL). The letters in the three-character
code are assumed to be alphabetic letters in ASCII code. Changing this
would require changing the constant in the PRETAB routine.

The end-of-table marker is set to the value of the beginning of the table
minus 1 (NIL). By convention, the NIL pointers, found at the end of a

328 PROGRAMMING THE 65816

string or within a directory location that does not point to a string, are set
to the value of the table base minus 1, in order to provide a unique identi­
fication. Some other convention could be used, but the NIL pointer must
never be confused with the address of an entry.

Insertions and deletions are performed in the usual way (see Part I of
this chapter), merely by modifying the required pointers. The INDEXED
flag is used to indicate if the pointer to the object is in the reference table

or in another string element.

SEARCHING
The SEARCH program (see Listing 9.7) uses a subroutine called PRETAB.
The search principle, as shown in Figure 9.21, is straightforward:

1. Get the directory entry corresponding to the letter of the alphabet in
the first position of the OBJECT's label. PRETAB does this.

2. Get the pointer. Access the element. If NIL, the entry does not exist.

3. If not NIL, match the element against the OBJECT. If they are not the
same, get the pointer to the next entry down the list.

4. Go back to 2.

SEARCH LOA #1 INITIALIZE INDEXD FLAG
STA INDEXD
JSR PRETAB GET REF. POINTR FOR START
LOA (INDLOC).Y PUT IN POINTR
STA POINTR

ENTRY CMP #TABASE-1 SEE IF END OF TABLE
BEQ NOTFND DONE IF IT IS
LOY #0
LOA OBJECT,Y
CMP (POINTR) ,Y COMPARE OBJECT
BCC NOTFND NOT IN TABLE
BNE NOGOOD TRY NEXT ENTRY
INY
LOA OBJECT, Y
CMP (POINTR), Y
BCC NOTFND
BEQ FOUND

NOGOOD LOA POINTR
STA OLD SAVE POINTR FOR LATER
LOY #ENTLEN-4

Listing 9.7: SEARCH Program for a Linked List

LDA
STA
STZ
BRA

NOTFND LDA
FOUND RTS

PRETAB LDY
SEP
LDA
SEC
SBC
ASL
REP
CLC
ADC
STA
RTS

(POINTR),Y
POINTR
INDEXD
ENTRY
#$FFFF

#0
#$20
OBJECT, Y

#$41
A
#$30

#REFBAS
INDLOC

DATA STRUCTURES 329

GET POINTR FROM ENTRY
STORE IN POINTR

SET TO 8-BIT ACCUMULATOR MODE
GET FIRST BYTE OF OBJECT

REMOVE ASCII OFFSET
MULTIPLY BY 2
BACK TO THE 16-BIT MODE

INDEX TO REFERENCE TABLE

Listing 9.1: SEARCH Program for a Linked List (continued)

A-POINTER AAA ABC

B-POINTER

0 AZC

NIL

(FOUND)

"1<CT lt---AZ_C_---t

Figure 9.21: A Search in a Linked List

INSERTING
The insertion is essentially a search followed by an insertion once a NIL
has been found (see Figure 9.22). The program allocates a block of stor­
age for the new entry by looking for an occupancy marker set at available.
The program, called NEW, appears in Listing 9.8.

330 PROGRAMMING THE 65816

BEFORE

A-POINTER CAB czz
B-POINTER NIL

C-POINTER

~OBJECT

~

AFTER
A-POINTER CAB czz
B-POINTER NIL

C-POINTER

CBS

Figure 9.22: Example of Insertion in a Linked List

NEW CLC SET TO NATIVE MODE
XCE
REP #$30 SET TO 16-BIT MODE
JSR SEARCH
BEQ OUTN STOP IF OBJECT FOUND
LDA #TABASE LOOK FOR UNOCCUPIED ENTRY
STA TEMPTR
LDY #ENTLEN-2 OFFSET TO OCCUPIED FLAG

LOOP LDA u
CMP (TEMPTR) ,Y TEST OCCUPANCY MARKER
BNE INSERT
LDA TEMPTR POINT TO NEXT BLOCK
CLC
ADC #ENTLEN
STA TEMPTR
BRA LOOP

INSERT LDA #ENTLEN-4 LENGTH OF OBJECT

Listing 9.8: NEW Program for a Linked List

DATA STRUCTURES 331

LSR A DIVIDE BY 2
STA LENGTH
LDY #0

LOPE LDA OBJECT,Y MOVE OBJECT
STA (TEMPTR), Y
INY
INY
DEC LENGTH
BNE LOPE
LDA POINTR PUT POINTR INTO ENTRY
STA (TEMPTR), Y
INY
INY
LDA #1
STA (TEMPTR), Y STORE OCCUPIED FLAG
LDA INDEXD TEST IF IT WAS IN REF. TABLE
BNE SETINX AND NEEDS ADJUSTING
DEY
DEY
LDA TEMPTR
STA (OLD) ,Y CHANGE PREVIOUS ENTRY'S POINTR
BRA OUTN

SETINX JSR PRETAB GET ADDRESS
LDA TEMPTR LOAD NEW ADDRESS
STA (INDLOC), Y

OUTN SEC SET TO EMULATION MODE
XCE
RTS

Listing 9.8: NEW Program for a Linked List (continued)

DELETING
The element is deleted by setting its occupancy marker to available and
adjusting the pointer to it from the directory or the previous element. An
example appears in Figure 9.23. The program, called DELETE, appears in
Listing 9.9.

SUMMARY
If you are a beginning programmer, it is not essential for you to under­
stand the details of data structure implementation and management. How­
ever, as you program more complex problems, you will need to learn
about data structures. The examples presented in this chapter were
designed to help you understand and solve the common problems
encountered with these structures.

332 PROGRAMMING THE 65816

A
B
c
D

A
B -
c 1-­

D

OAF POINTER

DOC POINTER

-
-

BEFORE

"OAF" "DOC"

DOC POINTER NIL

DELETE

AFTER

~ "DOC" -------1
NIL

,--c;.AF-1

(NOTE: OAF is not erased, but "invisible")

Figure 9.23: Example of Deletion in a Linked List

DELETE CLC SET TO NATIVE MODE
XCE
REP #$30 SET TO 16-BIT MODE
JSR SEARCH
BNE OUTD
LOY #ENTLEN-4
LOA (POINTR).Y GET POINTR FROM ENTRY
STA TEMPTR
!NY
!NY
LOA #0
STA (POINTR) ,Y CLEAR OCCUPIED MARK
LDA INDEXD CHECK IF REF. TABLE NEEDS UPDATE
BEO PREINX
JSR PRETAB GET POINTR INTO REFERENCE TABLE
JMP MOVEIT

PREINX LDA OLD
CLC
ADC #ENTLEN-4

Listing 9.9: DELETE Program for a Linked List

DATA STRUCTURES 333

STA INDLOC POINT TO PREVIOUS ENTRY'S POINTR
MOVEIT LDA TEMPTR

LOY #0
STA {INDLOC), Y STORE POINTR

OUTD SEC SET TO EMULATION MODE
XCE
RTS

Ustlng 9.9: DELETE Program for a Linked List (continued)

fXERCISES

9-1: Examine Figure 9.24. At address 15 in the memor~ there is a pointer
to Table I Table T starts at address 500. What are the actual contents of the
pointer to T?

Figure 9.24: Pointer to T

0

15
16

500

- POINTER TOT - -

TABLET

9-2: Draw a diagram showing how Block 2 would be removed from the
structure in Figure 9.2.

PROGRAM DEVELOPMENT

10

You have now reached the point where you should seriously consider
developing actual programs. Before proceeding to this task-which is the
goal of all your efforts-you should give careful consideration to the
options and tools available for developing programs. There are several
levels of hardware and software resources available. Which level is appro­
priate depends on the specific application. This chapter presents and eval­
uates all the available resources.

pROGRAMMING CHOICES

You may write a program either in binary or hexadecimal, in an assembly­
level language, or in a high-level language. Let's discuss these alternatives.
Figure 10.1 shows the different levels of programming.

HEXADECIMAL CODING
Most programs are conceived using assembly-language mnemonics. The
actual translation of such mnemonics into the corresponding binary code
requires an assembler. When there is no assembler, you must manually
perform the translation from mnemonics into binary. Because translating
into binary is tedious and error-prone, programmers often use hexadeci­
mal. Also, many single-board microcomputers require the entry of pro­
grams in hexadecimal mode.

Note: In Chapter 1, I showed that one hexadecimal digit represents four
binary bits. Therefore, two hexadecimal digits can represent the contents
of a byte. Appendix D gives the hexadecimal equivalent of the 65816
instructions.

336 PROGRAMMING THE 65816

POWER OF THE
LANGUAGE

APL

COBOL

FORTRAN

PL/M

PASCAL

BASIC

MINI-BASIC -----
MACRO

SYMBOLIC CONDITIONAL

ASSEMBLY

HEXADECIMAL/
OCTAL

BINARY

Figure ID.I: Programming Levels

HIGH
LEVEL

ASSEMBLY
LEVEL

]~INE
LEVEL

Although it is reasonable to translate a program into hexadecimal by
hand for a few instructions (for example, 10 to 100), when a program is
larger this process becomes tedious and error-prone. Although most
single-board microcomputers do not have an assembler and a full alpha­
numeric keyboard (to limit cost), they do provide a hexadecimal key­
board and 7-segment LED displays for program entry and debugging.

In summary, hexadecimal coding is not a desirable way to enter a pro­
gram into a computer; it is simply an economical way. The cost of an
assembler and the required alphanumeric keyboard is traded off against
the increased time and effort required to enter the program into the mem­
ory. Therefore, if you have to use hexadecimal coding, it is wise to first

write the program in assembly-language mnemonics, then convert it into

PROGRAM DEVELOPMENT 337

hexadecimal code. This is because a program written in assembly lan­
guage is easier to understand and debug.

ASSEMBLY LANGUAGE PROGRAMMING
Assembly-level programming includes both those programs written in
symbolic form but entered into the system in hexadecimal form, and
those entered in symbolic assembly-level form. Let's now examine the
entry of a program directly in its assembly language representation.

When you are entering a program in assembly language, you must have
an assembler program available that can read the mnemonic instructions
of the program and translate them into the required bit patterns, using
one to four bytes, as specified by the encoding of the instructions. A good
assembler also offers several additional facilities for writing a program. In
particular, it might offer directives or pseudo-operations that modify the
value of symbols, and it might also facilitate symbolic addressing.

Note: If you use symbolic labels, you can insert an extra instruction
between a branch and the point to which it branches without rewriting
the entire program. The assembler automatically adjusts all the labels dur­
ing the translation process. In addition, you can debug the program in
symbolic form if an assembler is available.

Later in this chapter, I will review the various software resources nor­
mally available on a system. I will first, however, examine the third alter­
native: high-level language programming.

HIGH-LEVEL LANGUAGE
You can also write a program in a high-level language, such as BASIC,
FORTRAN, or Pascal. A high-level language offers powerful instructions
that make programming faster and easier than assembly language. These
instructions are translated by a complex program into the final binary rep­
resentation that a microcomputer can execute. Typically, each high-level
instruction is translated into many individual binary instructions by a pro­
gram called a compiler or an interpreter. A compiler translates all the
instructions of a program into object code, and then executes the result­
ing code. By contrast, an interpreter interprets a single instruction and
executes it, then translates the next one and executes it. An interpreter
offers the advantage of interactive response, but results in low efficiency
when compared to a compiler. I will not cover these topics further here.
Instead, I will show you how to program an actual microprocessor in
assembly-level language.

338 PROGRAMMING THE 65816

SOFTWARE SUPPORT

I will begin by reviewing the main software facilities available in a com­

plete system for convenient software development. As I proceed, I will

summarize the definitions introduced previously and define the remaining

important programs available in a software development system.

The assembler translates the mnemonic representation of instructions

into their binary equivalent. It normally translates one symbolic instruction

into one binary instruction (which may occupy between one and four

bytes). The resulting binary code, called the object code, is directly exe­

cutable by the microcomputer. The assembler also produces a complete

mnemonic listing of the program, and a symbol definition list (examples of

listings appear later in this chapter). In addition, the assembler lists syntax

errors (such as misspelled or illegal instructions), branching errors, and

duplicate or missing labels. It does not, however, detect logical errors.

(Such errors are your problem.)
A compiler translates high-level language instructions into their binary

form. An interpreter, on the other hand, is similar to a compiler, but it

often does not generate an intermediate code; it simply executes the high­

level instructions directly.
The monitor is the basic program that is indispensable for using the

hardware resources of the system. It continuously monitors the input

devices for input; it also manages the rest of the devices. As an example, a

minimal monitor for a single-board microcomputer, equipped with a key­

board and LEDs, continuously scans the keyboard for user input and dis­

plays the specified contents on the light-emitting diodes. In addition, it

must recognize several limited commands from the keyboard, such as

START, STOP, CONTINUE, LOAD MEMORY, or EXAMINE MEMORY. On a

large system that provides complex file management or task scheduling,

the monitor is often qualified as the executive program. The overall set of

facilities is called the operating system; if the files are residing on a disk,

the operating system is qualified as the disk operating system, or DOS.

An editor facilitates the entry and modification of text or programs. It

allows users to conveniently enter, append, and insert characters; add and

remove lines of text; and search for characters or strings. The editor is an

important resource for convenient and effective text entry.

A debugger is a facility necessary for debugging programs. When a pro­

gram does not work correctly, there may typically be no indication of the

cause. In such a case, the programmer may want to insert breakpoints in

the program to suspend the execution of the program at specified

addresses and to examine the contents of registers or memory at these

PROGRAM DEVELOPMENT 339

points. The debugger is useful for suspending a program; examining, dis­
playing, and modifying the contents of its registers or memory; and then
resuming execution. A good debugger also offers several additional facili­
ties that allow the programmer to examine data in symbolic form (hexade­
cimal, binary, or other usual representations), as well as to enter data in
this format.

A loader or linking loader places various blocks of object code at speci­
fied positions in the memory and adjusts their respective symbolic
pointers, so that they can reference each other.

A simulator or an emulator program simulates the operation of a device
(usually the· microprocessor) so you can develop a program on a simu­
lated processor prior to placing it on the actual board. Using this
approach, you can suspend the program, modify it, and keep it in RAM
memory. The disadvantages of a simulator are the following:

1. It usually simulates only the processor itself, not input/output
devices.

2. The execution speed is slow, so the instruction cycle times are much
longer. It is, therefore, not possible to test real-time devices; and syn­
chronization problems may still occur, even though the logic of the
program may be found to be correct.

An emulator is essentially a simulator in real time. An emulator uses one
processor to simulate another one, and it simulates it in complete detail.

Utility routines are essentially the routines necessary in most applica­
tions. They are usually the routines that users wish the manufacturer had
provided. They may include multiplication, division, and other arithmetic
operations, as well as block move routines, character tests, input/output
device handlers (or drivers), and others. Figure 10.2 shows a memory
map for a typical program development system.

THE PROGRAM DEVELOPMENT SEQUENCE

I will now describe a t}1pical sequence for developing an assembly-level
program. I will assume that all the usual software facilities are available, so
that I can demonstrate their value. If they are not available in a particular
system, you can still develop programs, but the convenience will be
decreased and, therefore, the amount of time necessary to debug the pro­
gram is likely to be increased.

340 PROGRAMMING THE 65816

ROM RAM

ASSEMBLER OR
BOOTSTRAP COMPILER OR

INTERPRETER

KEYBOARD
DRIVER

DOS

DISPLAY
DRIVER

EDITOR OR
DEBUGGER OR

SIMULATOR

TIY
DRIVER

SYSTEM
WORKSPACE
(AND STACK)

CASSETIE USER
DRIVER PROGRAM

COMMAND USER
INTERPRETER WORKSPACE

UTILITY
ROUTINES

ELEMENTARY
DEBUGGER

ELEMENTARY
EDITOR

Figure 10.2: A Typical Memory Map

Recall that the normal approach for developing an assembly-level
program is as follows:

1. To design an algorithm and the data structures for the problem to be
solved.

2. To develop a comprehensive set of flowcharts, which represent the

program flow.

PROGRAM DEVELOPMENT 341

3. To translate the flowcharts into the assembly-level language for the

microprocessor (this is the coding phase) and enter the program on

the computer. A program can be entered in the RAM memory of

the system under the control of the editor.

4. Once you have entered the program, you can test a section of it,

such as one or more subroutines.

You must first, however, use the assembler to translate the program into

binary code. If the assembler does not already reside in the system, you

must load it from external memory, such as a disk. Assembly will result in

an object program that is ready to be executed.

A program is not normally expected to work correctly the first time. To

verify its correct operation, you can use the debugger to set breakpoints

at crucial locations to test whether the intermediate results are correct.

Whenever you find incorrect data, you have detected an error in the

program. At this point, you should refer to the program listing and verify

that the coding is correct. If you cannot find an error in the programming,

you should refer to the flowchart-the error might be a logical one.

If you have checked the flowcharts by hand and believe them to be rea­

sonably correct, the error probably stems from the coding. Therefore,

you must now modify a section of the program. If the symbolic represen­

tation of the program is still in the memory, you can simply reenter the

editor, modify the required lines, and then go through the preceding

sequence again. In some systems, the memory available may not be large

enough. In such a case, you will need to flush out the symbolic represen­

tation of the program onto a disk or cassette prior to executing the object

code. Naturally, in this case, you would have to reload the symbolic rep­

resentation of the program from its support medium, prior to entering the

editor again.
You can then repeat this procedure until the results of the program are

correct. I stress here that prevention is much more effective than a cure.

A correct design typically results in a program that runs correctly very

soon after the usual typing mistakes or obvious coding errors have been

removed. However, a sloppy design may result in programs that take an

extremely long time to debug. The debugging time is generally much

longer than the actual design time. In short, it is always worth investing

more time in the design in order to shorten the debugging phase.

Using the previous approach, you can test the overall organization of

the program, but you cannot test it in real time with input/output devices.

The direct solution for testing input/output devices is to transfer the pro­

gram onto an EPROM, install it on the board, and then see if it works.

342 PROGRAMMING THE 65816

However, there is another solution. You can use an in-circuit emulator.
An in-circuit emulator uses the 65816 microprocessor (or any other one)
to emulate a 65816 in (almost) real time. (It emulates the 65816 physically.)
The emulator is equipped with a cable terminated by a 40-pin connector,
identical to the pinout of the 65816. If you insert this connector in the real
application board you are developing, the signals generated by the emula­
tor will be exactly like those of the 65816, but perhaps a little slower. The
essential advantage of this approach is that the program under test can
continue to reside in the RAM memory of the development system.
Because an in-circuit emulator generates the real signals that communi­
cate with the real input/output devices you wish to use, you can continue
to develop the program using all the resources of the development system
(editor, debugger, symbolic facilities, file system), while testing input/
output in real time.

In addition, a good emulator provides special facilities, such as a trace.
In short, a trace provides a film of the events that occurred prior to the
breakpoint or malfunction. It is a recording of the last instructions and the
status of the buses in the system prior to a breakpoint. Such a facility is of
great value, since when an error is found it is usually too late-the instruc­
tion or data that caused the error has occurred prior to the detection.
Using a trace, you can find the segment of the program that caused the
error to occur. If the trace is not long enough, you can set an earlier
breakpoint.

This completes the description of the usual sequence of events involved
in developing a program. Let's now review the hardware alternatives
available for developing programs.

HARDWARE ALTERNATIVES

Many different hardware systems are available for program development.
The different systems vary in cost and capabilities. The more expensive and
complex the system, the more tools it provides for developing programs.

SINGLE-BOARD MICROCOMPUTER
The single-board microcomputer offers the lowest-cost approach to pro­
gram development. It is normally equipped with a hexadecimal keyboard,
some function keys, and six LEDs, which can display addresses and data.
Since a single-board microcomputer is equipped with a small amount of

PROGRAM DEVELOPMENT 343

memory (typically 1 Kor 2K), an assembler is not usually available. At best,

a single-board microcomputer has a small monitor and virtually no editing

or debugging facilities, except for a few commands. You must, therefore,

enter all programs in hexadecimal form; they are then displayed in hex­
adecimal form on the LEDs.

A single-board microcomputer has, in theory, the same hardware

power as any other computer. However, because of its restricted memory

size and keyboard, it does not support all the usual facilities of a larger

system and, therefore, program development is much slower. Because

developing programs in hexadecimal format is a tedious task, a single­

board microcomputer is best suited for educational and training purposes,

where programs of limited length are developed. Single-boards are proba­

bly the least expensive way to learn programming through actual practice.

They cannot, however, be used for complex program development unless

additional memory boards are attached and the usual software aids are

made available.

THE DEVELOPMENT SYSTEM
A development system is a microcomputer system equipped with a signifi­

cant amount of RAM memory (32K, 48K), the required input/output

devices (a CRT display, a printer, disks, and usually, a PROM programmer),

and perhaps an in-circuit emulator. A development system is specifically

designed to facilitate program development in an industrial environment.
It normally offers all, or most, of the software facilities mentioned in the

preceding section. In principle, it is the ideal software development tool.

Many types of personal computers (PCs) can be used as development sys­

tems, because the hardware and software to develop programs can be
added to the PC.

A limitation of a microcomputer development system is that it may not

have enough memory to support a compiler or interpreter. However, it

does offer all the required facilities for developing programs in assembly­
level language.

LOW-COST HOME COMPUTER
Home computer hardware is naturally analogous to that of a develop­

ment system. The main difference is that it is normally not equipped with

the sophisticated software development aids available on a development
system. As an example, many home computers, or hobby-type microcom­

puters, offer only elementary assemblers and minimal editors and file

344 PROGRAMMING THE 65816

systems. They normally do not have the facilities to attach a PROM pro­
grammer, an in-circuit emulator, or a powerful debugger. They represent,
therefore, an intermediate step between the single-board microcomputer
and the full microprocessor development system. For users who wish to
develop programs of modest complexity, they are probably the best com­
promise. Still, they can offer the advantage of low cost and a reasonable
array of software development tools.

TIME-SHARING SYSTEM
You can rent terminals that connect to time-sharing networks. These ter­
minals share the time of a larger computer (a minicomputer or main­
frame) and benefit from the advantages of the large installations. Cross
assemblers are available for all microcomputers on virtually all commer­
cial time-sharing systems. Some personal computers also have cross
assemblers. Formally, a cross assembler is an assembler for micropro­
cessor X, which resides on processor Y. The nature of the computer being
used is irrelevant. For example, you can write a program in 65816
assembly-level language, and the cross assembler will translate it into the
appropriate binary pattern. The difference, however, is that the program
cannot be executed at that point. It can only be executed by a simulated
processor, if one is available, provided it does not use any input/output
resources. Therefore, this solution is used only in industrial environments.

IN-HOUSE COMPUTER
Whenever a large in-house computer is available, cross assemblers may
also be available to facilitate program development. If such a computer
offers time-shared service, this option is analogous to the one above. If
it offers only batch service, this is probably one of the most inconvenient
methods of program development, since submitting programs in batch
mode at the assembly level for a microprocessor results in a very long
development time.

SUMMARY OF HARDWARE RESOURCES
There are three broad categories of hardware systems. A single-board
microcomputer is available for those who have only a minimal budget
and want to learn how to program. Using a single-board microcomputer,
you can develop all the simple programs in this book and many more.

PROGRAM DEVELOPMENT 345

Eventually, however, you will feel the limitations of this approach; for
example, when you want to develop programs having more than a few
hundred instructions.

A full development system is available for users of the more sophisti­
cated personal computers. Any solution short of the full development sys­
tem will cause a significantly longer development time. The trade-off is
clear: hardware resources versus programming time. Naturally, if the pro­

grams being developed are simple, there are less expensive approaches.
But if the programs are complex, it is difficult to justify any hardware sav­
ings when buying a development system, since programming costs are by
far the dominant cost of any project.

For a beginning programmer, an inexpensive home computer typically
offers sufficient, although minimal, facilities. Good development software
is now becoming available for many of the hobby computers.

Let's now analyze in more detail the one indispensable resource: the
assembler.

THE. ASSE.MBLE.R

I will now present the formal syntax or definition of assembly-level lan­
guage. An assembler allows the convenient symbolic representation of a
user's program, and makes it simple for the assembler program to convert
these mnemonics into their binary representation. The ORCA/M macro­
assembler from the Byte Works, Inc. is an example of a typical assembler.
I tested the programs in this book with the ORCA/M assembler.

ASSEMBLER FIE.LOS
When you type in a program for the assembler, several fields are used.
They are:

• The label field (optional), which may contain a symbolic address for
the instruction that follows.

• The instruction field, which includes the opcode and any operands.
(You may distinguish a separate operand field.)

• The comment field (optional), which is intended to clarify the program.

These fields appear on the programming form in Table 10.1.

346 PROGRAMMING THE 65816

HEX SYMBOLIC
INSTRUCTION COMMENTS

ADDRESS 1 2 3 4 LABEL OPCODE OPERAND

Table 10.1: Microprocessor Programming Form

Once you have fed a program into the assembler, the assembler pro­
duces a listing of it. When it generates a listing, the assembler provides
three additional fields, usually on the left of the page. An example of
assembler output appears in Figure 10.3.

On the far left of the output is the line number. Each line you type is
assigned a symbolic line number. The next field to the right is the actual
address field, which shows (in hexadecimal) the value of the program
counter that points to that instruction. Even further to the right is the hexa­
decimal representation of the instruction.

I have now shown one possible use of an assembler. Even if you are
designing programs for a single-board microcomputer that accepts only

PROGRAM DEVELOPMENT 347

0001 0000 KEEP TEST

0002 0000 MAIN START

0003 0000

0004 0000 A20D LOX #MSG2-MSG1 MESSAGE LENGTH

0005 0002 AOOO LOY #0
0006 0004 B91200 LBJ LOA MSGl,Y LOAD A CHAR

0007 0007 200FOO JSR COUT TYPE THE CHAR

0008 OOOA C8 INY POINT TO NEXT CHAR

0009 OOOB CA DEX DECREMENT COUNTER

0010 oooc DOF6 BNE LBJ LOOP UNTIL 0

0011 OOOE 60 RTS
0012 OOOF

0013 OOOF 6C3600 COUT JMP ($36)

0014 0012

0015 0012 48454C4C MSG! DC C'HELLO WORLD.'

0016 001E OD DC H'OD'

0017 001F MSG2 ANOP

0018 001F END

Local Symbols

COUT OOOOOF LBJ 000004 MSG! 000012 MSG2 00001F

Courtesy of the Byte Works Inc.

Figure 10.3: Example of Assembler Output

hexadecimal, you should still write the program in assembly-level lan­
guage, provided you have access to a system equipped with an assembler.
You can then run the programs on the system, using the assembler. The
assembler automatically generates the correct hexadecimal codes on the
system. This simple example shows the value of additional software
resources.

TABLES
When the assembler translates the symbolic program into its binary repre­
sentation, it performs two essential tasks:

1. It translates the mnemonic instructions into their binary encoding.

348 PROGRAMMING THE 65816

2. It translates the symbols used for constants and addresses into their
binary representations.

To facilitate program debugging, the assembler shows, at the end of the
listing, the hexadecimal value of each symbol used. This is called the sym­
bol table.

Some symbol tables list not only the symbol and its value, but also the
line numbers where the symbol occurs-thereby providing an additional
reference.

ERROR MESSAGES
During the assembly process, the assembler detects syntax errors and
includes them as part of the final listing. Typical diagnostics include: unde­
fined symbols, label already defined, illegal opcode, illegal address, and
illegal addressing mode. Many additional diagnostics are desirable, and
are usually provided. Such features vary with each assembler.

THE ASSEMBLY LANGUAGE
I have already discussed opcodes. I will define here the symbols, con­
stants, and operators you can use as part of the assembler syntax.

SYMBOLS
Symbols are used to represent numerical values, either data or addresses.
Symbols may include up to ten characters, and they must start with an
alphabetic character. The number of characters allowed in a symbol
depends on the assembler being used. The characters are restricted to let­
ters of the alphabet, numbers, and the underline character(_). Also, you
may not choose names identical to the opcodes utilized by the 65816, the
names of the registers (A, B, C, D, X, Y, S, PC, DBR, and PBR), or the vari­
ous names used as pseudo-operators by the assembler. The names of
these assembler directives are listed in the corresponding section of this
chapter.

Assigning a Value to a Symbol
Labels are special symbols with values that do not need to be defined by
the programmer. The value is automatically defined by the assembler pro­
gram when it finds that label. Thus, the label value automatically corres­
ponds to the number of the line where it appears. There are special

PROGRAM DEVELOPMENT 349

pseudo-instructions available for forcing a new starting value for labels or

for assigning them a specific value. However, you must define any other

symbols used for constants or memory addresses prior to use.

You can use a special assembler directive to assign a value to a symbol.

This directive is essentially an instruction to the assembler that will not be

translated into an executable statement. For example, the constant LOG is

defined as:

LOG EQU $302

This assigns the value 302 hexadecimal to the symbol LOG.

CONSTANTS OR LITERALS
Constants may be expressed in decimal, hexadecimal, octal, or binar~ or

as alphanumeric strings. To differentiate between the bases used to repre­

sent numbers, you must use a symbol. To load a zero into accumulator A,

you simply write:

LOA #0

The absence of a symbol always means decimal.

A hexadecimal number is preceded by the symbol $. To load the value

FF into A, you write:

LOA #$FF

An octal symbol is preceded by an @.A binary symbol is preceded by

a %. For example, to load the value 11111111 into A, you write:

LOA #%11111111

You can also use literal ASCII characters in the literal field. The ASCII

symbol must be preceded and followed by a single or double quote. For

example, to load the symbol S into A, you write:

LOA #'S'

OPERATORS
To further facilitate the writing of symbolic programs, assemblers allow the

use of operators. At a minimum, they usually allow plus and minus, so

that you can specify, for example:

LOA ADDRESS
LOX ADDRESS + 1

350 PROGRAMMING THE 65816

It is important to understand that the expression ADDRESS + 1 is com­
puted by the assembler, to determine the actual memory address that
must be inserted as the binary equivalent. It is computed at assembly time,
not at program-execution time.

In addition, other operators may be available, such as multiply and
divide-a convenience when accessing tables in memory. There may also be
available more specialized operators, such as greater than and less than,
which truncate a two-byte value into its high and low byte, respectively.

Naturally, an expression may evaluate to a positive or negative value.
Logical expressions evaluate to a zero or a one.

Finally, a special symbol traditionally represents the current value of the
address of the line. This symbol (*) means "current location" (value of PC).

EXPRESSIONS
The 65816 assembler specifications allow a wide range of expressions with
arithmetic and logical operations. Table 10.2 displays these operations. Let's
examine the order of precedence of the various operations:

• Operations within parentheses and .NOT. are evaluated first.

• Multiplication, division, and all of the logical operators take precedence
over addition and subtraction.

• Operators with the same precedence are evaluated left to right.

• Comparisons of expressions have the lowest priority.

ADDRESSING MODES
It is necessary to distinguish the different addressing modes used in the
65816 with special symbols. If a symbol is not used, the assembler nor­
mally chooses an 8-bit or 16-bit address unless the assembler can deter­
mine the type of addressing required by context. (Note: The assembler
chooses direct-page addressing [8-bit] whenever possible.) To force direct­
page addressing, you must put the symbol < before the operand. Simi­
larly, you can force absolute addressing by putting the symbol : or ! before
the operand, and use > to force absolute long addressing.

I
The symbols <, 1, and >are needed because the assembler can use an

expression for an address. If the expression evaluates to a value less than
256, direct addressing is assumed, but you may want to use absolute or
absolute long addresssing. The symbols force a certain type of addressing
regardless of an expression's value. Refer to Chapter 5 for more informa­
tion on addressing mode notation.

PROGRAM DEVELOPMENT 351

OPERATOR FUNCTION

+ ADDITION

- SUBTRACTION

* MULTIPLICATION

I DIVISION

I BIT SHIFT

.NOT. BOOLEAN NEGATION

.AND . LOGICAL AND

. OR. LOGICAL OR

.EOR. LOGICAL EXCLUSIVE OR

= EQUAL

<> NOT EQUAL

<= LESS THAN OR EQUAL

>= GREATER THAN OR EQUAL

< LESS THAN

> GREATER THAN

Table 10.2: Assembler Operators

ASSEMBLER DIRECTIVES
Directives are special orders, given by the programmer to the assembler,

that result in storing values into symbols or in memory or in controlling

the execution of the assembler. To provide a specific example, I will now

review a few of the assembler directives available on the 65816 assembler.

I begin with:

ORG NN

This directive sets the assembler address counter to the value NN. In

other words, the first executable instruction encountered after this direc­

tive will reside at the value NN. You can use this directive to locate differ­

ent segments of a program at different memory locations.

The directive

LABEL • EQU NN

assigns a value to a label.
The declare constant directive

DC H'N'

352 PROGRAMMING THE 65816

assigns the 8-bit hexadecimal (H) value N to a byte residing at the current
program counter. You may use a label with DC.

The same directive is used to form a two-byte constant:

DC H'NN'

This directive assigns the value NN to the two-byte memory word residing
at the current program counter. You may assign binary, integer, and
floating-point constants by using the letters B, I, and F, respectively.

You may also use the define constant directive to form a character
string:

DC C'string'

This directive places the 7-bit ASCII characters in STRING in successive
bytes in memory. The single-quote character' is a delimiter for the string.

The declare storage bytes directive

DS NN

allocates NN bytes of space at the present location in the program. You
may use a label with OS.

The 65816 directive

65816 ON
65816 OFF

tells the assembler whether to assemble 65816 instructions or only 6502
instructions. If the 65816 directive is off, then 65816 instructions, such as
BRL, will be flagged as errors.

The long accumulator directive

LON GA ON
LON GA OFF

tells the assembler to use 16-bit numbers for the immediate addressing
modes that use the accumulator. You should use LONGA ON when you
set the M bit in the status register to 0. You should use LONGA OFF when
the M bit is 1. It is your responsibility to tell the assembler what mode the
processor is in, because the assembler cannot figure this out for itself.

The long index register directive

LONGI ON
LONGI OFF

tells the assembler to use 16-bit numbers for immediate addressing modes
that use the index registers. You should use LONG! ON when you set the
X bit in the status register to 0. You should use LONG! OFF when the X bit

PROGRAM DEVELOPMENT 353

is 1. It is again your responsibility to tell the assembler what mode the pro­

cessor is in.
The start program segment directive

START LABEL

tells the assembler to begin a program segment with the name in LABEL.

Each program segment must be followed by an end directive. There must

be at least one START directive in every program.

The end directive

END

marks the end of a program segment. It directs the assembler to print the

local symbol table and prepare for the next segment. END is the last state­

ment of a program.

SUMMARY

This chapter has presented the techniques and the hardware and software

tools required to develop a program; it has also examined various trade-offs

and alternatives. These techniques range from a single-board microcomputer

to a full development system at the hardware level, and from binary coding

to high-level programming at the software level.

CONCLUSION

In this book, I have covered all the important aspects of programming the

65816, ranging from the basic definitions and concepts to the internal manip­

ulation of the 65816 registers, the management of input/output devices, and

the implementation of software development aids. These concepts apply to

other microprocessors as well as to the 65816.

What is the next step? There is no substitute for experience. Once you

have studied the examples in this book and completed the exercises, you

should be ready to move ahead and create your own programs.

APPENDIXES

HEXADECIMAL CONVERSION TABLE 355

APPENDIX A

HEX 0 1 2 3 4 5 6 7 8 9 A B c D E F 00 000

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 0

1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 256 4096

2 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 512 8192

3 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 768 12288

4 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 1024 16384

5 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 1280 20480

6 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 1536 24576

7 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 1792 28672

8 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 2048 32768

9 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 2304 36864

A 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 2560 40960

B 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 2816 45056

c 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 3072 49152

D 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 3328 53248

E 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 3584 57344

F 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 3840 61440

5 4 3 2 1 0

HEXj DEC HEX! DEC HEX! DEC HEXI DEC HEXI DEC HEX I DEC

0 0 0 0 0 0 0 0 0 0 0 0

1 1,048,576 1 65,536 1 4,096 1 256 1 16 1 1

2 2,097, 152 2 131,072 2 8, 192 2 512 2 32 2 2

3 3, 145,728 3 196,608 3 12,288 3 768 3 48 3 3

4 4, 194,304 4 262, 144 4 16,384 4 1,024 4 64 4 4

5 5,242,880 5 327,680 5 20,480 5 1,280 5 80 5 5

6 6,291,456 6 393,216 6 24,576 6 1,536 6 96 6 6

7 7,340,032 7 458,752 7 28,672 7 1,792 7 112 7 7

8 8,388,608 8 524,288 8 32,768 8 2,048 8 128 8 8

9 9,437, 184 9 589,824 9 36,864 9 2,304 9 144 9 9

A 10,485,760 A 655,360 A 40,960 A 2,560 A '160 A 10

B 11,534,336 B 720,896 B 45,056 B 2,816 B 176 B 11

c 12,582,912 c 786,432 c 49, 152 c 3,072 c 192 c 12

D 13,631,488 D 851,968 D 53,248 D 3,328 D 208 D 13

E 14,680,064 E 917,504 E 57,344 E 3,584 E 224 E 14

F 15,728,640 F 983,040 F 61,440 F 3,840 F 240 F 15

Appendix A: Hexadecimal Conversion Table

356 PROGRAMMING THE 65816

APPENDIX B

HEX
LSD

0
l
2
3
4
5
6
7
8
9
A
B
c
D
E
F

MSD
BITS

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

0
000

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
so
SI

l
001

OLE
DCl
DC2
DC3
DC4
NAK
SYN
ETB

CAN
EM

SUB
ESC
FS
GS
RS
us

Appendix B: ASCII Conversion Table

NUL -Null
SOH - Start of Heading
STX - Start of Text
ETX - End of Text
EOT - End of Transmission
ENQ - Enquiry
ACK - Acknowledge
BEL -Bell
BS - Backspace
HT - Horizontal Tabulation
LF - Line Feed
VT - Vertical Tabulation
FF - Form Feed
CR - Carriage Return
SO - Shift Out
SI -Shift In

Appendix B: The ASCII Symbols

2
010

3
011

4
100

5
101

6
110

SPACE
!

0
l
2
3
4
5
6
7
8
9

@
A
B
c
D
E
F
G
H
I
J
K
L

M
N
0

p

Q
R
s
T
u
v
w
x
y

a

$
%
&

+

I

<

>
?

OLE - Doto Link Escape
DC - Device Control

z
[
\
l

NAK - Negative Acknowledge
SYN - Synchronous Idle

b
c
d
e
f
g
h
i

i
k
I

m
n
0

ETB - End of Transmission Block
CAN -Cancel
EM - End of Medium
SUB - Substitute
ESC -Escape
FS - File Separator
GS - Group Separator
RS - Record Separator
US - Unit Separator
SP -Space (Blank)
DEL -Delete

7
111

p
q
r
s
t

u
v
w
x
y
z
{

DEL

DECIMAL TO BCD CONVERSION TABLE 357

APPENDIX c

DECIMAL BCD DEC BCD DEC BCD

0 0000 10 00010000 91 10010000

1 0001 11 00010001 91 10010001

2 0010 12 00010010 92 10010010

3 0011 13 00010011 93 10010011

4 0100 14 00010100 94 10010100

5 0101 15 00010101 95 10010101

6 0110 16 00010110 96 10010110

7 0111 17 00010111 97 10010111

8 1000 18 00011000 98 10011000

9 1001 19 00011001 99 10011001

Appendix C: Decimal to BCD Conversion Table

:. :g
CD

i ;c·
i:?
-I
':J"
C'D

s::
~

°' ::I
l!I.
2
Q.
5·
::I

~

i
!!l.
5·
,?

~
~.
0
::I

~
ffi
Ill

5.
i c
"'
I
~-

MNE-
MONIC

Aoc-
AND -
ASL -
ace -
BCS ·

BEO -
BIT -
BMI -
BNE -
BPL

BAA
BAK ~-

BAL -
eve
BVS •
CLC ··-
CLO··
cu
CLV
CMP

COP
CPX
CPY
DEC
DEX

DEY
EOR ,_
INC
INX
/NY

JML
JMP
JSL
JSR
LOA·.

LOX
LOY
LSA ..
MVN
MVP

NOP
ORA
PEA

PEI

PEA

OPERATION
A+M+C-A
Afl.M-A
c - [lSi] .::-.. QJ - 0
BRANCH IF C = 0
BRANCH IF C = 1

BRANCH IF Z = 1
MM(NOTE1)
BRANCH IF N = 1
BRANCH IF Z = 0
BRANCH IF N =O

BRANCH ALWAYS
BREAK (NOTE 2)
BRANCH LONG ALWAYS
BRANCH IF V = 0
BRANCH IF V = 1

o-c
0- D
o- 1
o-v
A·M

CO-PROCESSOR
X·M
Y·M
DECREMENT
X-1 - X

Y-1 - Y
A'IM - A
INCREMENTS
X+ 1-X
y + 1 -v
JUMP LONG TO NEW LOC.
JUMP TO NEW LDC.
JUMP LONG TO SUB.
JUMP TO SUB.
M-A

M x
M-ful!

~-=- M1~1~;~RD c
M- M FORWARD

NO OPERATION
AVM -A
Mpc + 1, Mpc + 2 - Ms- 1,Ms
S-2 - S
M(d), M(d + 1) - Ms- 1, Ms
s - 2 - s
Mpc+rl,Mpc+rl+l -Ms-1,Ms
s. 2 - s

w

"' CD

Operation, Operation Codes, and Status Register
PROCESSOR ,., ,., ., STATUS CODE MNE-

)\ JI(:>. M "t,., ~ . Ill ~ ~76543210 MONlC 1i ... < ·- ~~ ::!. ,; ,; ci 1i ti ~ "C ~ :!. ~ ,; ~ JCNVMXDIZC E" O
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 N V 1 B 0 I Z C E= 1

69 60 BF 65 71 77 61 75 70 7F 79 72 67 63 73 N V z c ADC 29 20 2F 25 31 37 21 35 30 JF 39 32 27 23 33 N z AND OE 06 QA 16 1E N z c ASL
90 BCC
BO BCS

)::.. ,,
0 ..,,
(;) ..,,
"')> l'T1 3'. :z 3'. z 0 (;)

>< -I :c FO BEQ 89 2C 24 34 JC M,M6 z BIT

I
30 BM/
DO BNE
10 BPL

m
0 "' "' co

80 . BAA "' 00 • 0 I BAK
82 * BAL

50 eve
70 BVS

18
0 CLC 08 0 CLO 58 0 cu 88

N
0 CLV C9 CD CF CS 01 07 Cl 05 DD OF 09 02 C7 CJ 03 z c CMP

02 0 I ·* COP ED EC E4 N z c CPX co cc C4 N z c CPY CE CB JA 06 DE N z DEC CA N z DEX
88 N z DEY 49 40 4F 45 51 57 41 55 50 SF 59 52 47 43 53 N z EOA EE E6 1A F6 FE N z INC EB N z INX CB N z /NY

DC * JML 4C SC 6C 7C JMP 22 JSL 20 FC z JSR A9 AO AF A5 Bl 87 Al BS BO BF B9 B2 A7 A3 B3 N LOA
A2 AE A6 86 BE N z LOX AO AC A4 B4 BC N z . LOY 4E 46 4A 56 SE 0 z c LSA

54 * MVN
44 * MVP

EA NOP 09 OD OF 05 11 17 01 15 10 1F 19 12 07 03 13 N z ORA
F4 * PEA

04 * PEI

62 * PEA

Courtesy of Western Design Center, Inc.

),,

l ::s
9:
IC

~

8 a s·
c:
~

PHA
PH8
PHO
PHK
PHP

PHX
PHY
PLA
PLB
PLO

PLP
PLX
PLY
REP

ROL -

ROR
RTI
RTL
RTS
SBC

SEC
SEO
SEI
SEP
STA··

STP·
STX
STY
STZ
TAX

TAY
TCD ·
TCS
TDC··
TRB

TSB
TSC
TSX-
TXA
Txs-

TXY
TVA-
TYX-
WAI
WDM

XBA
XCE-

Opera.lion, ppera~i~>.11,. (fq~~~~ .. ai;i~,_~!atus cf,J!$(\J!~.~!, .~continued) -
A-Ms,S-1-S
DBR-Ms,S-1-S
O-Ms,Ms-1,S-2-S
PBA-Ms,S-1-S
P-Ms,s-1-s
x-Ms.s-1-s
Y-Ms,S-1-S
5+1-S,Ms-A
5+1-S,Ms-DBR
S +2- S,Ms-1, Ms- 0
5+1-S,Ms-P
5+1-S,Ms-X
.S.,+1-S,Ms-Y

Mq;; o!
C2

1 -cJ 2E 26 2A 36

Le- ffi2t::'ti"J
RTRN FROM INT.

6E 66 6A 76

RTRN FROM SUB. LONG
ATRN SUBROUTINE
A-M-lr-A E9 ED EF ES F1 F7 El F5

1-c 38
1-0 FS
1-1 7S
MVP-P E2
A-M 80 BF SS 91 97 81 95

STOP(1 - ~2) DB
X-M SE 86 96
Y-M SC 84 94
00-M 9C 84 74
A-X AA

A-Y AS
c-o SB
c-s 1B
Q-C 7B
MM-M 1C 14

AVM-M oc 04
s-c 3B
s-x BA
X-A 8A
x-s 9A

x-v 9B
Y-A 98
v-x BB
0-RDY CB
NO OPERATION (RESERVED) 42

B-A EB
c-E FB

Notes:
1. Bit immediate N and V flags not affected. When M = 0, M15 - N and M14 -V.
2. Break Bit (8) in Status register indicates hardware or software break.

3E

7E

FD

90

9E

1;
OB
4B
08

IUA
SA
68
AB
2B

<O
FA
7A

40
6B
60

FF F9 F2 E7

9F 99 92 87

3. *=New W65C816/802 Instructions
• = New W85C02 Instructions
Blank = NMOS 6602

PHA
PHB

* PHO

* PHK
PHP . PHX

• PHY
N i: PLA
N L * PLB
N z * PLO

N V M X D I Z C PLP
N PLX
N . z . PLY
NvMx61 zc• REP

N z c RqL

N z c ROR
N V M X D I Z C RTI

* RTL
RTS

E3 F3 N V z c SBC

1 SEC
1

i
SEO
SEI

NVMX01i:C• SEP
83 93 STA . STP

STX
STY

N i: • STZ
TAX

N z TAY
N z * TCD

N i: * TCS

* TDC
z • TRB

N
z • TSB
z * TSC

N z TSX
N z TXA

TXS

N z * TXY
N z TVA
N z * TYX

• WAI

* WOM

N z . * XBA
E * XCE

+Add VOA
- Subtract ""I" Exclusive OR
I\ AND

Courtesy of Western Design Center, Inc.

)).. .,,
~ z
0 x
01 IO .,,

m

~
0 z
0 .,,
m
;II

~
0 z
()

0 c m
Y'
> z
c
"' >l
'-I c
"' ;II
m
C)
Vi
-I m
;II

w
"' "°

w
~ 1S
t Detailed Instruction Operation

~1 ADDRESS MODE CVCLf;: iii, ii(, VOA, VPA ADDRESS BUS DATA BUS RtW ADDRESS MODE CYCLE Vii, ifL. VOA. VPA ADDRESS BUS DATA BUS RtW))ii ,,
1. Immediate # 1. 1 1 1 1 PBR,PC Op Code 1 4a Direct d 1 1 1 1 1 PBR,PC Op Code ;;a

!!'
(LDY,CPY,CPX,LDX,ORA, 2. 1 1 0 1 PBR,PC+1 IDL 1 (BIT,STZ,STY,LDY. 2 1 1 0 1 PBR,PC+1 DO ,, 0
ANO,EOR,AOC,BIT,LDA, (1)(8) 2a 1 1 0 1 PBR,PC+2 IOH 1 CPY,CPX,STX,LDX, (2) 2a 1 1 0 0 PBR,PC+1 10 1 Cl
CMP,SBC REP.SEP) ORA,AND,EOA,ADC, 3 1 1 0 O,D+DO Data Low 110 ,,

~ (14 Op Codes) STA,LDA,CMP.SBC) (1) , .. 1 1 0 0,0+00+1 Data High 110

0
(2 and 3 bytes) (18 Op Codes) IT1 3: (2 and 3 cycles) (2 bytes) :z ~ 2a Absolute• 1. 1 1 1 1 PBR,PC Op COde 1 (3.4 and 5 cycles) 3:

e!. (BIT,STY,STZ,LOY, 2. 1 1 0 1 PBR,PC+l AAL 1 4b. Direct (R-M-W) d 1 1 1 1 1 PB A.PC Op Code 1 0 z
[CPY,CPX,STX,LDX. 3. 1 1 0 1 P8R,PC+2 AAH 1 (ASL,AOL,LSR,AOR 2. 1 1 0 1 PBA.PC+l DO 1 Cl

ORA,AND.EOR,AOC, 4. 1 1 0 OBA.AA Data Low 110 DEC,INC,TSB,TRBJ (2) 2a 1 1 0 0 PBR,PC•l 10 1

>< STA,LDA,CMP,SBC) (1) 4a. 1 1 0 DBR,AA•1 Data High 110 (6 Op Codes) 3. 1 0 0 0,0+00 Data Low 1 -I

"' (18 Op Codes) (2 bytes) (1) 3a. 1 0 1 0 O.D•OO•t Data High 1 ::c
V'I (3bytes) (5,6,7 and 8 cycles) (3) 4 1 0 0 0 0,0•00•1 10 1 m co (4 and 5 cycles) (1) Sa. 1 0 0 0,0•00•1 Data High 0 IT1 ~

2b. Absolute (R-M-W) • 1. 1 1 1 1 PBR.PC Op Code 5 1 0 1 0 O,D•DO Data Low 0 °'
"' "' 2. 1 1 0 1 PBR,PC+1 AAL 1 5 Accumulator A 1. 1 1 1 1 PBR,PC Op Code QI

5" (ASL,ROL.LSR,ROR 3. 1 1 • 1 PBR.PC•2 AAH 1 (ASL,INC,ROL,DEC,LSR,ROR) 2 1 1 0 0 PBR,PC+1 10 0:
lQ. DEC,INC,TSB,TRB) 4. 1 0 0 DBR,AA Data Low 1 (60p Codes) ... (6 Op Codes) (1) 4• 1 0 1 0 DBR,AA+1 Data High (1 byte)

c: (3 bytes) (3) 5 1 0 0 0 DBR,AA+1 10 1 (2cycles)

@. (6 and 8 cycles) (1) 6a. 1 0 0 DBR,AA+1 Data High 0 6a Implied I 1 1 1 1 1 PBR,PC Op Code
6. 1 0 1 0 OBA.AA Data Low 0 (DEY, INY, INX. DEX. NOP, 2 1 1 0 0 PBR,PC+1 10

0 2c. Absolute (JUMP) • 1 1 1 1 1 PBR,PC Op Code 1 XCE, TVA, TAV,TXA, TXS.
::I (JMP)(4C) 2 1 1 0 1 PBR,PC+1 NEWPCL 1 TAX,TSX,TCS,TSC,TCD,

0 (1 Op Code) 3 1 1 0 1 PBR,PC+2 NEWPCH 1 TDC,TXV,TVX,CLC,SEC,

(3bytes) 1 1 1 PBR, NEW PC Op Code 1 CU,SEl.CLV,CLD,SEO)
"O (3cycles) (25 Op Codes)
~ 1 1 1 1 1 PBR.PC Op Code 1 (1 byte) ... 2d. Absolute (Jump to

~. subroutine) • 2. 1 1 0 1 PBR,PC+t NEWPCL 1 (2cycles)

(JSR) 3. 1 1 0 1 PBR,PC+2 NEWPCH *6b. Implied I 1 1 1 1 1 PBR,PC Op Code
0 (1 Op Code) 4. 1 1 0 0 PBR.PC+2 10 1 (XBA) 2 1 1 0 O PBR,PC•1 10
::I (3byt88) 5. I 1 0 o.s PCH 0 (1 Op Code) 3 1 1 0 0 PBR,PC+t 10

(&cycles) 6. 1 1 0 O,S-1 PCL 0 (1 byte)

(different order from N6502) 1 1 1 PBR,NEWPC NextOpCode 1 (3cycles)

*3a. Absolute Long .i 1 1 1 1 1 PBR,PC Op Code 1 RDY

(ORA,AND,EOR,ADC 2. 1 1 0 1 PBR.PC+1 AAL 1 • 6c Wait For Interrupt

STA,LDA,CMP,SBC) 3. 1 1 0 1 PBR.PC+2 AAH 1 (WAI) 1 1 1 1 1 1 PBR,PC Op Code

(8 Op Codes) 4. 1 1 0 1 PBR,PC+3 AAB 1 (1 Op Code) (9) 2 1 1 0 0 1 PBR,PC+1 10

(4bytes) 5. 1 1 1 0 AAB,AA Data Low 110 (1 byte) 3 1 1 0 0 0 PBR,PC+t 10

(5 and 6 cycles) (1) So 1 1 1 0 AAB,AA+l Data High 110 (3cycles) IRO.NMi I 1 1 1 1 1 PBR,PC+1 IRQ(BRK)

*3b. Absolute Long (JUMP) •I 1 1 1 1 1 PBR,PC Op Code • 6d. Stop-The-Clock

(JMPJ 2 1 1 0 1 PBR,PC+t NEW PCL 1 (STP) 1 1 1 1 1 1 PBR,PC Op Code

(1 Op Code) 3 1 1 0 1 PBR,PC+2 NEW PCH 1 (1 Op Code) 2 1 1 0 0 1 PBR,PC+l 10

{4 bytes) 4. 1 1 0 1 PBR,PC•3 NEW BR (1 byte) RES,,, 3 1 1 0 0 1 PBR,PC+1 10

(4cycles) 1 1 1 1 NEWPBR,PC Op Code (3cycles) RES=O le 1 1 0 0 1 PSR,PC+l RES(BRKJ

1 RES=O 1b 1 1 0 0 1 PBR.PC+1 RES(BRK)
RES=l " 1 1 0 0 1 PBR.PC+1 RES(BRK)

*Jc. Absolute Long (Jump to 1 1 1 1 1 PBA,PC Op Code
See 21a Stack 1 1 1 1 1 PBR,PC+t BEGIN

Subroutine Long) • 2 1 1 0 1 PBA,PC+t NEWPCL 1
(Hardware interrupt)

(JSL) 3. 1 1 0 1 PBA,PC•2 NEW PCH 1 7. Direct Indirect Indexed Cd),y 1. 1 1 1 1 PBR,PC OpCode
(1 Op Code) 4. 1 1 1 0 o,s PBR 0 (ORA,AND,EOR,AOC, 2. 1 1 0 1 PBR,PC•t 00
(4 bytes) 5. 1 1 0 0 o,s 10 STA,LOA,CMP,SBC) (2) 2a 1 1 0 0 PBR,PC+t 10
(7cycles) 6. 1 1 0 1 PBR,PC•3 NEW PBA 1 (8 Op Codes) 3. 1 1 1 0 0,0+00 AAL

7 ' 1 O O,S-1 PCH 0 (2bytes) 4. 1 1 1 0 O,D+OO•t AAH .. 1 1 1 0 0,5-2 PCL 0 (5,6,7 and 8 cycles) (4) 48. 1 1 0 0 DBR,AAH,AAL + VL 10 1
1 1 1 NEW PBR,PC NeKI Op Code 1 5. 1 1 1 0 OBA,AA•Y Data Low 1/0

(1) 5' 1 1 1 0 OBR,AA+Y+1 Data High 1/0

Courtesy of Western Design Center, Inc.

)I.
:g
• i
ii(

!!I

8
:::I
!:!'.
:::I
c:
~

ADDRESS MODE

8. Direct Indirect
Indexed Long [d),y
(ORA,ANO,EOR,ADC,
STA,LDA,CMP,SBC)
{8 Op Codes)
(2bytes)
(6,7 and 8 cycles)

9. Direct Indexed Indirect (d,•)
(ORA,ANO,EOR,ADC,
STA,lOA,CMP,SBC)
{8 Op CodeS)
(2bytesJ
(6,7 and 8 cycles)

1oa. D1rect.X d.•
(BIT,STZ,STY,LDV,
OAA,AND,EOA.AOC,
STA,LOA,CMP,SBC)
(11 Op Codes)
{2bytes)
(4,5 and 6 cycles)

10b D1rect.X(R-M-WJ d,•
(ASL,ROL,LSA.ROA.
DEC.INC)
(6 Op Codes)
(2 bytes)
(6,7,8 and 9 cycles)

1 i Direct, V d,y
(STX.LOX)
(2 Op Codes)
(2 bytes)
(4,5 and 6 cycles)

12a Absolute,X a,•
(BIT,LDV,STZ,
ORA,AND,EOR,ADC,
STA,LDA,CMP.SBC)
(11 Op Codes)
(3 bytes)
{4,5 and 6 cycles)

12b Absolute,X(A-M-W) •••
(ASL,AOL,LSR,ROR,
DEC.INC)
(6 Op Codes)
(3 bytes)
(7 and 9cycles)

Detailed Instruction Operation {continued)
CYCLE iii, ii[, VOA, VPA ADDRESS BUS DATA BUS RIW ADDRESS MODE CYCLE VP, ii"L, VOA. YPA ADORES8 BUS DATA BUS RIW

I. I I I I PBA,PC Op Code I •13. Absolute Long,)(91,• I. I I I I PBA,PC Op Code I
2 I I 0 I PBA,PC+1 DO I (ORA.ANO,EOA,AOC, 2 I I 0 I PBR,PC+1 AAL I

{2) 2a I I 0 0 PBR,PC+1 10 I STA,LDA,CMP,SBC) 3 I I 0 I PBR,PC+2 AAH I
3 I I I 0 0,0+00 AAL I (8 Op Codes) 4 I I 0 I PBR,PC+3 AAS I
4. I I I 0 0,0+00+1 AAH I (4 bytes) s I I I 0 AAB,AA+X Data Low 110
s I I I 0 0,0+00+2 AAS I (5and6cycles) ill Sa I I I 0 AAB,AA+X+1 Data High 110

• I I I 0 AAB,AA+Y Data Low 1/0 14 Absolute.Y •.Y I. I I I I PBR,PC Op Code I
(1) 6a I I I 0 AAB,AA+Y+1 Data High 110 (LDX,ORA,ANO,EOR,ADC, 2. I I 0 I PBR,PC+1 AAL I

1. I I I I PBR,PC Op Code I STA.LDA,CMP,SBC) 3. I I 0 I PBR,PC+2 AAH I
2. I I 0 I PBR,PC+1 DO I (9 Op Codes) i41 3a I I 0 0 OBA,AAH,AAl + Yl 10 1

(2) 2a I I 0 0 PBR,PC+1 10 I (3 bytes) 4. I I I 0 DBR,AA+Y Data low 1/0
3. I I 0 0 PBR,PC+1 10 I (4,5 and 6 cycles) ill 4a I I I 0 DBR,AA+Y+l Data High 1/0
4 I I I 0 O,O+OO+X AAL I 15 Relativer I. I I I I PBA,PC Op Code I
S. I I I 0 O,D+OO+X+l AAH I jBPl,BMl,BVC,BVS,BCC, 2. I I 0 I PBR,PC+1 Offset I • I 1 I 0 OBA.AA Data low 1/0 BCS,BNE,BEO.BAA) iS) 2a I I 0 0 PBA,PC+l 10 I

(1) 6a. I I I 0 OBR;AA+l Data High 1/0 (9 Op Codes) i61 2b I I 0 0 PBA,PC+1 10 I
I I I I I PBA,PC Op Code I (2bytes) I. I I I I PBA,PC+Otfset Op Code I
2 I I 0 I PBR,PC+t DO I (2,3 and 4 cycles)

(2) 2a I I 0 0 PBR,PC+t 10 I •ts Relat111e Long rt I. I I I I PBR,PC Op Code I
3. I I 0 0 PBA,PC+l 10 I (BAL) 2 I I 0 I PBR,PC+t Offset Low I
4 I I I 0 O,D+DO+X Data Low 110 (1 Op Code) 3 I I 0 I PBR,PC+2 Offset High I

(1) 4a. I I I 0 O,D+DO+X+t Data High 110 (3bytes) 4 I I 0 0 PBR,PC+2 10 I
(4cyclesJ I I I I I PBR,PC+Olfset Op Code I

I I I I I PBR,PC Op Code I 17a Absolute Indirect (a) I I I I I PBR,PC Op Code I
2 I I 0 I PBA,PC+l DO I (JMP) 2. I I 0 I PSR,PC+l AAL I

(2) 2a I I 0 0 PBA,PC+t 10 I (1 Op Code) 3. I I 0 I PBR,PC+2 AAH I
3 I I 0 0 PBA,PC+l 10 I (3 bytes) 4. I I I 0 O,AA NEW PCL I
4 I 0 I 0 O,D+OO+X Data low I (5cycles) s I I I 0 O,AA+l NEW PCH I

(1) 4a I 0 I 0 O,O+OO+X+t Data High I I I I I I PBR,NEW PC Op Code I
(3) 5 I 0 0 0 O,O+DO+X+l 10 I

*t7b Absolute Indirect (a) I I I I I PBR,PC Op Code I (1) 6a I 0 I 0 O,D+DO+X+l Data High 0
2 I I 0 I PSA,PC+l AAL I • I 0 I 0 O,D+DO+X Data Low 0

(JML) 3 I I 0 I PBA,PC+2 AAH I
I I I I I PBR,PC Op Code I (1 Op Code) 4 I I I 0 0.AA NEWPCL I
2 I I 0 I PBR,PC+1 DO I (3 bytes) s I I I 0 0.AA+1 NEWPCH I

i2) 2a I I 0 0 PBR.PC+1 10 I (6cycles) • I I I 0 O,AA+2 NEWPBR I
3. I I 0 0 PBR,PC+t 10 I I I I I I NEW PSR,PC Op Code I
4 I I I 0 O,O+OO+Y Data Low 110

• 18 Direct Indirect (d) I I I I I PBA,PC Op Code I (1) 4a I I I 0 O,O+OO+Y+l Data High 1/0
(0AA,AND,EOA.ADC. 2 I I 0 I PBA,PC+l DO I

I I I I I PBA,PC Op Code 1 STA,LDA,CMP,SBC) (2) 2a I I 0 0 PBA,PC+t 10 I
2 I I 0 I PBR,PC+l AAL I (8 Op Codes) 3 I I I 0 O,D+OO AAL I
3 I I 0 I PBA,PC+2 AAH I (2bytes) 4 I I I 0 O,D+OO+l AAH I

(4) 3a I I 0 0 DBA,AAH,AAL+ XL 10 I (5,6 and 7 cycles) s I I I 0 OBA.AA Data Low 110
4 I I I 0 DBR.AA+X Data Low 110 ii) Sa I I I 0 DBR,AA+t Data Low 1/0

(1) 4a I I I 0 DBA.AA+X+t Data High 1/0
•t9 Direct Indirect Long (dl I I I I I PBA,PC Op Code I

(OAA,AND.EOR,AOC 2 I I 0 I PBR,PC+l DO I
I I I I I PBA,PC Op Cade I STA,LOA.CMP,SSC) (2) 2a I I 0 0 PBR,PC+l 10 I
2 I I 0 I PBR,PC•t AAL I (8 Op Codes) 3 I I I 0 0,0+00 AAL I
3 I I 0 I PBA.PC+2 AAH I (2 bytes) 4 I I I 0 0,0+00+1 AAH I
4. I I 0 0 DBR,AAH.AAL +XL 10 I (6.7 and 6 cycles) s I I I 0 0,0+00+2 AAS I s I 0 I 0 DBR,AA+X Data Low I • I I I 0 AAB,AA Data Low 1/0

(1) Sa I 0 I 0 DBA,AA+X+l Data High I (1) 6a I I I 0 AAB,AA+l Data High 1/0 {3) 6 I 0 0 0 DBR,AA+X+l 10 I
I I I 1 I PBR,PC Op Code I (1) 7a I 0 I 0 DBR.AA+X+l Data High 0 20a. Absolute Indexed Indirect (a,•)

7 I 0 I O OBR,AA+X Data Low 0 (JMP) 2. I I 0 I PBA,PC+l AAL I
t1 Op Code) 3 I I 0 I PBA,PC+2 AAH I
(3 bytes) 4 I I 0 0 PBA,PC+2 10 I
(6cycles) s I I 0 I PBA,AA+X NEW PCL I

• I I 0 I PBR,AA+X+1 NEW PCH I
I I I I I PBA, NEW PC Op Code I

Courtesy of Western Design Center, Inc.

):=-.,, .,,
l'T1 z
0

><
l'T1

0
m
);!
;=
m
0

"' ..,,
CD

"' z
~
;ia
c
()
-I
5 z
0 .,,
m
;ia

~
5 z

w

°"

w
~

~ Detailed Instruction Operation (continued)

~1 ADDRESS MODE CYCLE VP, iiL, VOA. VPA ADDRESS BUS DATA BUS R/W ADDRESS MODE CYCLE VP, Ml, VOA, VPA ADDRESS BUS DATA BUS •Ni

!'!'
*20b. Absolute Indexed Indirect 1 1 1 PBA.PC Op Code 1 21g Stack (Pull)• 1 1 1 1 1 PBR.PC Op Code

(Jump to Subroutine Indexed 2 1 1 0 1 PBA.PC+l AAL 1 (PLP,PLA,PL Y, PLX. PLO ,PLB) 2 1 1 0 0 PBR,PC+1 10

Indirect)(•,•) 3. 1 1 0 o.s PCH 0 (Different than N6502) 3 1 1 0 0 PBR,PC+1 10

(JSR) 4 1 1 0 O,S-1 PCL 0 (60p Codes) 4 1 1 0 0,$+1 Register Low

(1 Op Code) 5 1 0 1 PBA,PC+2 AAH (1 byte) (1) .. 1 1 0 0,$+2 Register High 1

n (3bytes) 6 1 1 0 0 PBR,PC+2 10 (4and Scycles)

0 (8cycles) 7 1 1 0 1 PBR,AA+X NEW PCL *21h Stack (Push Eflect1ve 1 1 1 1 1 PBR,PC Op COde
::J B 1 0 1 PBR,AA+X+1 NEWPCH Indirect Address)• 2 1 1 0 1 PBR.PC+t 00
!:!". 1 PBR,NEWPC NedOpCode 1 (PEI) (2) 2a 1 1 0 0 PBR.PC+t 10
::J 21a Stack (Hardware 1 1 1 PBR.PC 10 (1 Op Code) 3 1 1 0 0,0+00 AAL
c: Interrupts)• (3) 2 0 0 PBR,PC 10 1 (2 bytes) 4 0 0,0+00+1 AAH

& (IRQ,NMl,ABORT,RES) (7) 3 1 0 o.s PBA 0 (6 and 7 cycles) 5 1 1 0 0,5 AAH

(4 hardware mterrupts) 4 1 1 0 0,5-1 PCH 0 6 1 1 0 0.5-1 AAL

(O bytes) 5 1 1 0 0,5-2 PCL 0 •211 Stack (Push Effective 1 1 1 1 1 PBR,PC Op Code
(7 and 8 cycles) 6 1 1 0 0,$-3 p 0 Absolute Address) • 2. 1 1 0 1 PBR,PC+1 AAL

0 1 1 0 O,VA AAVL 1 iPEA) 3. 1 1 0 1 PBR,PC+2 AAH
0 1 1 0 O,VA+l AAVH 1 (1 Op Code) 4 1 1 0 o.s AAH

°" N

):=.. ,, ,,
0 ..,,
Cl ..,, ,,
> fT1
3: z 3:
z 0
Cl

>< -t
J:
m fT1
"' "' ~

1 1 O,AAV Next Op Code 1 (3bytes) 5 1 1 1 O O.S-1 AAL "' 21b Stack (Software 1. 1 1 1 1 PBR,PC Op Code 1 (5cycles)
Interrupts)• (3) 2. 1 1 0 1 PBR,PC+l Signature 1 *21J Stack (Push Effective 1 1 1 1 1 PBR.PC Op Code
(BAK.COP) (7) 3. 1 1 0 o.s PBA 0 Program Counter Relahve 2 1 1 0 1 PBR,PC+1 Ottset Low
(2 Op Codes) 4 1 1 0 O,S-1 PCH 0 Address)• 3 1 0 1 PBR,PC+2 Offset High
(2bytes) 5 1 1 0 O,S-2 PCL 0 (PER) 4 1 1 0 0 PBR,PC+2 10
(7 and 8 cycles) 6 1 0 O,S-3 (COP Latches) P 0 (l Op Code) 5 1 1 1 0 o.s PCH+OFF+

0 1 0 O,VA AAVL (3 bytes) CARRY
0 1 0 O,VA+1 AAVH (6cyclesJ 6 1 1 0 O,S-1 PCL+OFF5ET 0

1 0.AAV NextOpCode 1 *22 Stack Relative cl,• 1 1 1 1 1 PBA,PC Op Code
21c Stack (Return from 1 1 1 1 1 PBA,PC Op Code 1 (OAA.ANO,EOR,AOL, 2. 1 1 0 1 PBA,PC+1 so

Interrupt)• 2 1 1 0 0 PBA,PC+1 10 1 STA.LOA.CMP.SOC) 3. 1 1 0 0 PBA,PC+1 10 1
(RTI) (3) 3 0 0 PBR,PC+1 10 (8 Op Codes) 4. 1 1 1 0 O,S+SO Data Low 110
(1 Op Code) 4 1 0 O,S•1 p 1 (2bytes) (1) 4a. 1 0 O,S+S0+1 Da1a High 110
(1 byte) 5 1 1 0 O,S+2 PCL 1 (4 and 5 cycles)
(6 and 7 cycles) 6 1 1 1 0 O,S+3 PCH 1 *23. Stack Relative Indirect 1 1 1 1 1 PBR.PC Op Code
(d1flerent order from N6502) (7) 7 1 1 0 O,S+4 PBA 1 Indexed (d,1),r 2 1 1 0 1 PBR.PC+1 so

1 1 1 1 PBR,PC New Op Code 1 (ORA,ANO,EOR.ADC, 3 1 1 0 0 PBA+PC+l 10
21d Stack (Return from 1 1 1 1 1 PBR,PC Op Code STA,LOA,CMP,SDC) 4 1 1 0 0.S+SO AAL

Subroutine)• 2 1 1 0 0 PBR.PC+1 10 (8 Op Codes) 5 1 1 1 0 0,5•50+1 AAH
(ATS) 3 1 1 0 0 PBR.PC+l 10 1 (2 bytes) 6 0 0 0.5+50+1 10 1
(1 Op Code) 4 1 1 1 0 0,5•1 PCL 1 (7 and 8 Cycles) 7 1 1 0 OBR,AA+Y Data Low 110
(1 byte) 5 1 1 1 0 0,5+2 PCH (1) 78 1 1 1 0 OBR,AA+Y•l Data High 110
(6cycles) 6 1 1 0 0 0,5+2 10

1 1 1 PBR.PC Op Code

•21e Stack (Return from 1 1 1 1 1 PBA,PC Op Code
Subroutme Long)• 2 1 1 0 0 PBA,PC+1 10
(RTL) 3 0 0 PBA,PC+t 10
(1 Op Code) 4 0 0,5+1 NEW PCL
(1 byte) 5 0 0,5•2 NEWPCH
(6cycles) 6. 0 0,5+3 NEW PBR

1. 1 NEWPBR.PC Next Op Code

211. Stack (Push)• 1 1 1 1 1 PBR,PC Op Code
(PHP.PHA,PHY,PHX, 2 1 1 0 0 PBR,PC+1 10
PHO,PHK,PHB) (1) 3a 1 1 1 0 o.s Register High
(7 Op Codes) 3 1 1 O O.S-1 Register Low
(1 byte)
(3and 4cycles)

Courtesy of Western Design Center, Inc.

)lo

t
~

9:
~

!'!I

n­o
::I
!:!".
::I
c:

&

Detailed Instruction Operation (continued)
ADDRESS MODE CYCLE VP, iii, YDA, YPA ADDRESS BUS DATA BUS RiW

*248. Block Move Pos11tve f 1
(forward) arc 2
(MVP) 3
(1 Op Code) N-2 4
(3 bytes) Byte 5
(7 cycles) C"'2 6
x = Source Address 7

*24b

y
0

Oostonatoon [' c =Number of Bytes to Move-1 2.
x,y Decrement 3.
MVP is used when the N-1 4.
destmationstartaddress Byte 5
is higher (moreposil1ve) C=1 6
than the source start address. 7

FtFFFr o Start

1tsource Start
L:: Dest End

Source End
000000

N Byte [i
Last 4
C=O 5

6
7
t

Block Move Negative ['
(backward) aye 2
(MVN) N-2 3
(1 Op Code) Byte 4
(3bytes) C=2 5
(7 cycles) 6
K = Source Address 7
y 0 Destma11on

c = Number of Bytes to Move -1 ['
K,y Increment 2

N-1 3
FFFFFF Byte 4

j d
Soocce End Col ~

Dest End 7

~~:;c;,!~" ~ 2

000000 N ~~~ ;

MVN 1s used when the 5
destmat1on start address 6
1slower(morenegat1ve) 7
than the source start 1
address

1 1
1 1
1 1
1 t

1 t
t

1 1
1 1
1 t
1 1
1 t

1 t
1 t

1 t

1 t

1 t

t t
1 t

t 1
1 t
1 t
t t
1 t

t 1
t t
t t

t t
1 t

1 PBR,PC
0 t PBR,PC+t
0 t PBR,PC+2

0 SBA,X
0 DBA,Y

DBA,Y
DBA,Y

1 1 PBR,PC
0 1 PBR,PC+1
0 1 PBR,PC+2
1 0 SBA,X-1
t 0 DBA,Y-1
0 0 DBA,Y-1
0 0 DBA,Y-1

t t PBR,PC
0 1 PBR.PC+l

PBR,PC+2
SBA,X-2

0 DBA.Y-2
DBA,Y-2
DBA,Y-2

t PBA,PC+3

t PBR,PC
PBR,PC+1
PBR.PC+2
SBA.X
OBA.Y

0 0 DBA.Y
0 0 DBA,Y

t 1 PBR,PC
0 1 PBR,PC+l
0 1 PBR,PC+2

0 SBA,X+l
0 D8A,Y+1

DBA,Y+1
DBA,Y+1

1 PBR.PC
t PBR.PC+l

0 t PBR.PC+2
0 SBA.X+2

t 0 DBA,Y+2
0 0 DBA,Y+2
0 0 DBA,Y•2

t PBR.PC+3

Op Code
OBA
SBA
Source Data
Dest Data
10
10
Op Code
OBA
SBA
Source Data
Dest. Data
10
10

Op Code
OBA
SBA
Source Data
Oest Data
ID
ID
Next Op Code 1

Op Code
OBA
SBA
Source Data
Dest Data
10
10

Op Code
OBA
SBA
Source Data
Dest Data
10
10

Op Code
OBA
SBA
Source Data
Dest Data
10
10
Next Op Code 1

Notes

(1) Add 1 byte (for 1mmed1ate only) !or M=O or X=O (1.e 16 bit data). add 1 cycle !or M=O or X=O

(2) Add 1 cycle for direct register low (Dl) not equal 0

(3) Special case for aborting mstruction This is the last cycle which may be aborted or thf'I Status,
PBR or OBA registers w1U be updated.

(4) Add 1 cycle for mdexmg across page boundaries, or wnte, or X=O When X=1 or in the
emulation mode, this cycle contains invalid addresses

(5) Add 1 cycle 1f branch 1s taken

(6) Add 1 cycle tf branch 1s laken across page boundaries in 6502 emulatmn mode (E= 1)

(7) Subtract 1 cycle !or 6502 emulation mode (E=1)

(8) Add 1 cycle for REP.SEP

(9) Wait at cycle 2 for 2 cycles after~ or~ active input

Abbreviations

AAB Absolute Address Bank
AAH Absolute Address High
AAL Absolute Address Low

AAVH Absolute Address Vector High
AAVL Absolute Address Veclor Low

C Accumulator
, D Direct Register
OBA Destmat1on Bank Address
OBA Data Bank Register

DO Direct Offset
IDH Immediate Data High
IDL Immediate Data Low

10 Internal Operation
P Status Register

PBR Program Bank Register
PC Program Counter

R-M-W Read-Mod1fy-Wr1te
S Stack Address

SBA Source Bank Address
SO Stack Offset
VA Vector Address
x,y Index Registers

* = New W65C816/802 Addressing Modes
• = New W65C02 Addressing Modes

Blank = NMOS 6502 Addressing Modes

Courtesy of Western Design Center, Inc.

)>
"lJ
"lJ
rri
2:
0

><
rri

0
m

~
i=
m
0

°' "' CD

°' z
"' -I
;a
c
n
-I
0
z
0
" m
;a

~
0
z

w

°' w

364 PROGRAMMING THE 65816

BIBLIOGRAPHY

Mensch, William, Jr. CMOS W65C816 and W65C802 16-Bit Microprocessor

Family. Data Sheet. Western Design Center, November 1985.

Zaks, Rodnay. from Chips to Systems: An Introduction to Microprocessors, Ref.

0-063. Berkeley, Calif.: SYBEX, 1981.

Zaks, Rodnay, and Lesea, Austin. Microprocessor Interfacing Techniques, 3rd ed.,
Ref. 0-029. Berkeley, Calif.: SYBEX, 1979.

/NDEX

#, 46, 67
$, 67
<, 216
[], 219
*, 223, 236, 349
%, 230
!, 349
:, 349

A register, 286-287
ABORT signal, 49
Absolute addressing, 209-210, 215-216,

229
Absolute indexed addressing, 218, 223
Absolute indexed indirect addressing, 221
Absolute long indexed addressing, 218
Accumulators, 33, 41-42, 56, 63

exchanging, 204
loading, 149
pulling contents from stack, 167
pushing contents onto stack, 160
transferring to index registers,

189-190
ACIA (asynchronous communications

interface adapter), 278-279
ADC instruction, 46, 57, 59, 66, 70, 115
Addition, 7-8, 70, 103

8-bit, 55, 57, 65
16-bit, 61-62, 68
32-bit, 65

Address bus, 31-32, 35-36
Address register, 35, 213, 286-287
Addressing, 111, 207
Addressing modes, 102, 207-208

absolute, 209-210, 215-216, 229
absolute indexed, 218, 223
absolute indexed indirect, 221
absolute long indexed, 218
combining, 213, 220
direct, 210, 216
direct indexed, 218, 223
direct indirect indexed, 220, 226
direct indirect long indexed, 220
extended, 215
immediate, 209, 215
implied, 209, 215
indexed, 210-211, 286, 307
indirect, 212-213, 219, 300
notation, 221-222
relative, 210, 216-217, 221

Algorithms, 1-2, 63, 300

INDEX 365

Alphanumeric data representation, 21
ALU (arithmetic-logical unit), 31, 33, 41
AND instruction, 87, 104, 116, 121, 194
Architecture of microcomputer, 31, 34
Arithmetic programs, 55
ASCII code, 21-22, 284-285, 355
ASL instruction, 17
Assembler, 338
Assembler program, 56, 337, 344,

348-349
Assembly-language representation, 45
Asynchronous branching, 262
Asynchronous transmission, 239, 244
Automatic sequencing, 40
Auxiliary circuits, 33

Bank address, 43
BASIC language, 9, 336
BCC instruction, 75, 118, 242
BCD arithmetic, 18-19, 60, 65-68, 285,

356-357
BCD representation, 18-19, 66-67
BCS instruction, 119
BE (bus enable) input, 51
Benchmark program, 238
BEQ instruction, 120
Binary

addition, 67
digits, 4
division, 82, 84
logic circuits, 4
mode, 60
numbers, 66
representation, 22, 25
search, 315-318

BIT instruction, 107, 121
Bit serial transfer, 239-241
Bit 7 (the sign bit), 14, 284
Bit 2, 107
Bits, 4, 61

abbreviations for, 110
grouping, 4
manipulation, 100, 106

Blocks
accessing elements in, 210
adding, 225, 287-288
indexing, 222
moving, 153-154, 226
printing, 256
storing, 226
transferring, 223-225
zeroing, 283

BMI instruction, 122, 258
BNE instruction, 76, 123
Bootstrap, 32

366 PROGRAMMING THE 65816

BPL instruction, 124
BRA instruction, 125
Branch instructions, 71, 75-76, 100, 107,

110-111, 118-120, 122-125, 127-129,
210, 262

Branch relative byte, 216
Break character, 236
Breaks, 101, 111, 126
BRK instruction, 111, 126
BRL instruction, 111, 127
Bubble-sort, 290-294
Buffer, 33, 284
Bus enable input (BE), 51
Buses, 31-33, 35-36, 43
BVC instruction, 128
BVS instruction, 129

C (carry) bit, 8, 12, 15, 61, 82, 103, 108,
130, 180, 205

CALL instruction, 91, 100
CALL SUB instruction, 89-90
Carry flag, 68
CHAR, 245, 284
Characters, 284

printing a string, 254
search, 224

Checksum, 287
Chips, 33, 48
Circular permutation, 294
CLC instruction, 59, 67, 75, 103, 130
CLO instruction, 60, 131
CLI instruction, 132
Clock, 32, 49, 112

cycles, 40, 47
stopping, 185
signals, 51

CLOSENOW flag, 314, 319
CLV instruction, 133
CMP instruction, 84, 134
Combination chips, 33
Comments, 57
Compiler, 337-338
Complementing bits, 10
COMPRES flag, 319
Conditional branch, 110
Conditional instruction, 34
Control bus, 31-32
Control instructions, 101, 111-112
Control register, 174-175
Controller sequencer, 43
Conversions, 279, 285, 356
COP instruction, 135
COUNT, 70
Counting, 70, 231, 233
CPU (central-processing unit), 31, 111

CPX instruction, 136
CPY instruction, 137
CRT, 229, 258
CU (control unit), 31

DATA, 245
D bit, 60, 107
D register, 42, 44, 158
Data bank register (DBR), 43, 56, 161,

168, 225
Data counters, 35
Data paths, 245-246
Data processing operations, 100, 104

bit manipulation, 106
categories of, 103

Data ready flag, 236
Data storage, 37
Data structures, 2, 63, 300-301
Data transfers, 70, 99, 102, 229, 235,

238-239
Debugger, 338
Debugging, 3, 95, 337-338
DEC instruction, 46, 103, 138
Decimal-binary table, 7
Decimal bit, 131, 181
Decimal mode, 60
Decoder, 43
Decoding, 33, 40, 45
Decrementing, 138-140
Delays, 155, 231-234, 251
Device controller, 237
Device handler, 258
DEX instruction, 76, 139
DEY instruction, 140
Diamonds, 2
Direct addressing, 210, 216
Direct binary representation, 5
Direct indexed addressing, 218, 223
Direct indirect indexed addressing, 220,

226
Direct indirect long indexed addressing,

220
Direct page addressing mode, 111
Direct page register (0), 42
Direct register, 193

pulling contents from stack, 169
pushing contents onto stack, 162

Directives, 350-351
Directories, 301
Disable bit, 132, 182
Displacement byte, 210
Division, 82, 84, 86
OMA technique, 256
DOS (disk operating system), 338

E bit, 48-49, 51, 107, 205
EBCDIC code, 21
Editor, 338
Emulation mode, 49, 107
Emulator, 338
EOR instruction, 14, 87, 105, 141
Errors, 337, 347
Exponent, 19-20
Extended addressing. See Absolute

addressing

Fetching, 39, 41, 47
FIFO (first in/first out) list, 303
Fixed format representation, 16-17
Floating-point representation, 19-20
Flowcharting, 2-3
FORTRAN, 336
FROM, 223

GETCHAR subroutine, 284

Handshaking, 244-245
Hardware, 2, 341-342
Hardware stack (5), 37, 93
Hexadecimal, 23-25, 67, 247, 249, 286,

354

Immediate addressing, 209, 215
Immediate operation, 46
Implied addressing, 209, 215
INC instruction, 45, 47, 103, 142
Inclusive-OR operation, 104
INCMNT value, 314
Incrementing, 45, 142-144, 225
Index registers, 37, 43, 70, 211, 213, 225
Indexed addressing, 210-211, 286, 307
INDEXED flag, 325
Indexed indirect addressing, 213
Indexing, 37, 70, 222
Indexing modes, 211-212
Indirect addressing, 211-213, 219-220,

300
Inherent addressing. See Implied addressing
Input/output devices, 49, 101-111, 229,

244-245, 250, 261, 284
Input/output instructions, 101, 111, 229
Input/output interfacing, 229
Instructions, program, 2, 56, 70

categories, 99
execution, 38, 47-48, 232
formats, 44-45
individual descriptions, 114
representation, 45

Interface chips, 33
Internal processor status signals, 51

Interpreter, 33 7-338
Interrupt line, 261, 265

INDEX 367

Interrupts, 37, 49, 132, 203, 229, 235,
244, 256, 261-262, 264-267

disabling, 182
reversing action, 176
simulated, 101

INX instruction, 143
INY instruction, 144
IR (instruction register), 39-40, 43
IRQ interrupt, 49, 263

JML instruction, 145
JMP instruction, 111, 146, 210
JSL instruction, 93, 147
JSR instruction, 93, 148, 258
Jump instructions, 70-71, 93, 100,

110-111, 145-148, 210, 217, 219

Keyboard, 229

LOA instruction, 46, 48, 56, 70, 102, 149,
237

LOX instruction, 150
LOY instruction, 151
LEDs (light-emitting diodes), 22, 246-249
LENGTH, 283
LIFO (last-in/first-out) structure, 37
Lists, 301-306
LOC memory location, 87
Logical operations, 100, 104
Logical OR, 105
Long addressing, 213, 216
LOOP address, 242
Loop interface, 250
Loops, 73, 210, 237, 242, 258, 260
LSR instruction, 75, 78, 152, 242

M bit, 51, 64, 107, 238
Mantissa, 19-20
Megabyte, 44
Memory

accessing location, 102
adding, 115
addressing, 37
banks, 44
clearing, 283
moving blocks of, 153-154
operand, 134, 136-137, 149
zeroing, 283

Memory/index signal, 51
Memory-mapped 1/0, 101, 339
ML (memory lock), 49
Mnemonic representation, 45
Monitor, 338

368 PROGRAMMING THE 65816

Monitor program, 32, 337
MPU (microprocessor unit), 31-32, 49
Multibyte operands, 62
Multiplication, 71, 73-74, 80, 94
MVN instruction, 153, 225
MVP instruction, 154, 225
MIX (memory/index) signal, 51

N (negative) bit, 109, 238
Native mode, 49
Negative numbers, 9-11
Nested calls, 91
NEW program, 328-330
Nibbles, 4
NIL pointers, 326
NMI interrupt, 49, 262-263
No-borrow condition, 64
NOP instruction, 112, 155

Octal representation, 23-24
One-byte instructions, 45-47
One-shot mode, 234
One's complement representation, 10
Opcode, 44, 347
Operands, 62-63
Operation codes, 357
OR instruction, 87, 156, 183, 195
ORA instruction, 104-105, 156
Overflow (V) bit, 12, 14-15, 51, 108, 133,

235
Overflow indicator, 14

P register, 41
Packed BCD, 18, 66
Packed BCD addition, 68-69
Page, 42
Parallel byte transfers, 135-137
Parity bit, 21, 284-285
Pascal, 336
Passing parameters, 94
PBR (program bank register), 43
PC (program counter), 35, 41-42, 90, 110
PEA instruction, 103, 157
PEI instruction, 103, 158
PER instruction, 103, 159
Peripherals, 229, 255, 257-258, 275
PHA instruction, 160
PHB instruction, 103, 161
PHD instruction, 162
PHK instruction, 163
PHP instruction, 164
PHX instruction, 165
PHY instruction, 166
Physical sensor, 229
PIA (peripheral interface adapter), 276

PIO (parallel input/output), 33
PLA instruction, 167
PLB instruction, 168
PLD instruction, 169
PLP instruction, 170
PLX instruction, 171
PLY instruction, 172
Pointers, 35, 213
Polling, 229, 234, 256, 258, 260-261,

264-265
POP instruction, 37
Ports, 274
Positive numbers, 9-11
PRINTC routine, 254
Printers, 229, 245-246
Printing

character string, 254
memory block, 256

Processor status register (P), 41
Program bank register (PBR), 43, 163,

176-177
Program counter (PC), 35, 41-42, 90, 110
Program loops. See Loops
Program representation, 4
Programming, 1-3, 95
Programs

executing, 36, 90
filling patches in, 155
recursive, 94
storing, 32
suspending, 265
test, 283

Pseudo-instructions, 60
Pull instruction, 37, 103
Pulses, 231, 234-235, 261
Push instruction, 103

Queue, 303

RAM (random-access memory), 32-33
RDY (ready) signal, 51
Read operation, 56
Rectangles, 2
Recursion, 94
Register addressing. See Address register
Registers, 33, 55-56, 59
Relative addressing, 210, 216-217, 221
Relays, 229-230
REP instruction, 106, 173
RES (reset) signal, 49
RETURN instruction, 89-91
ROL instruction, 81, 174
ROM (read-only memory), 32
ROR operations, 175

Rotate operations, 81, 83, 100, 105, 108,
174-175

RTI instruction, 111, 176
RTL instruction, 93, 177
RTS instruction, 76, 93, 178
Rubout, 236
R/W (read/write), 49

SBC instruction, 70, 179
Scheduling, 256-257
SEARCH program, 327
Searching, 307, 327
SEC instruction, 64, 68, 103, 180
SED instruction, 67, 68, 181
SEI instruction, 182
Sensors, 229
SEP instruction, 106, 183
Serial input, 239
Serial-to-parallel conversion, 244
Shift operations, 33, 35, 75, 78, 83, 100,

105, 108, 152
Short addressing, 210
Signals, 51, 101
Signed binary representation, 9
Simulator, 338
65816

architecture, 229
chips, 48
data processing operations, 103
improvements, 101
instruction set, 101
interfacing, 273
internal organization, 41-42
modes, 60
peculiarities, 59-60

Skew operations, 100, 105
Skip operations, 100
SO (set overflow) input, 51
Software stack, 3 7
Sorting, 290
Speed of program execution, 4, 9, 70
STA instruction, 57, 70, 76, 184, 230
Stack instructions, 37, 103
Stack operations, 103
Stack pointer (S), 36, 43
Stack relative addressing mode, 217
Stacks, 36-38, 91, 94, 300
Start bit, 250
STATUS, 237-238
Status bits, 109, 245

resetting, 173
storing, 183

Status flag, 14-15, 34
Status register, 84, 107, 109, 176, 261

pulling contents from stack, 170

INDEX 369

Status Register (continued)
pushing contents onto stack, 164
testing bits in, 100

Stop bits, 250
STP instruction, 112, 185
STX instruction, 102, 186
STY instruction, 187
STZ instruction, 188
Subroutine library, 95
Subroutine return instruction, 88
Subtraction, 8, 70, 103

16-bit, 64
BCD, 68

Symbol table, 348
Symbolic representation, 25, 344, 349,

355
SYNC (synchronize) output, 51
Synchronization signals, 101
Synchronous branching, 262
Synchronous transmission, 239

Tables, 224, 286
accessing elements in, 210
computing sums of entries, 287
indexing, 222

TAX instruction, 102, 189
TAY instruction, 190
TCD instruction, 191
TCS instruction, 192
TDC instruction, 193
Teletype, 250-251, 253, 255, 258
TEMP memory location, 80-81
Ten's complement, 68
Test instructions, 100
Testing operations, 107
Three-byte instructions, 46, 48
Timer, 234
Timesharing networks, 343
Timing, 232-234
TO, 223
TRB instruction, 107, 194
Truncating the result, 17
Truth table, 104
TSB instruction, 195
TSC instruction, 196
Two-byte instructions, 46, 48
Two's complement, 10-13
TXA instruction, 198
TXS instruction, 197, 199
TXY instruction, 200
TYA instruction, 201
TYX instruction, 202

UART, 244, 279
Unconditional jump, 110

370 PROGRAMMING THE 65816

Underflow, 16
Utility programs, 283, 338

V (overflow) bit, 12, 14-15, 51, 108, 133,
235

Vector, 49
Voltage level, 230-231
VP (vector pull), 49
VPA (valid program) address, 50

WAI instruction, 112, 203, 229, 264
WAIT, 245
Western Design Center, 273
WORD, 242
Write operation, 59
W65C802 signals, 49, 51

x bit, 51, 107

X index register, 43, 139, 224-225, 248,
251, 254

loading, 150
pulling contents from stack, 171
pushing contents onto stack, 165
storing, 186
transferring, 198-200

XBA instruction, 102, 204, 215
XCE instruction, 107, 205

Y index register, 43, 140, 225, 248
loading, 151
pulling contents from stack, 172
pushing contents onto stack, 166
storing, 187
transferring, 201-202

Z (zero) bit, 76, 84, 87, 108, 284
Zero-page addressing, 210

